Skip to main content
Log in

Singlet–triplet competition in the low-lying energy states of C4O4−n S n (n = 1–3) molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Cyclobutanetetrone, C4O4, has a triplet ground state, although the ground state of C4S4 is singlet. This computational study focuses on the mono-, di-, and trithiosquarate, C4O4−n S n (n = 1–3), molecules as transition stages between the two ending points (C4O4 and C4S4), and investigates the trends for the changes in the energies, geometry, partial atomic charges, partial spin densities, as well as orbital energies of the four low-lying electronic states. As the number of the sulfur atoms is increasing, the singlet spin state becomes energetically more and more preferred. For C4O3S molecule, where only one oxygen atom is substituted by sulfur, the CCSD(T) calculations predict a triplet ground state, but the error of the calculations is most likely higher than the calculated 0.5 kcal/mol singlet–triplet energy gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

Notes

  1. We note that the discussed trends based on the enthalpy values at 0 K can be applied for the trends based on electronic energies. The zero point energy corrections usually favor to the actual ground electronic state, but the caused energy differences do not exceed the 0.7 kcal/mol. For the first two electronic states of C4O3S structure, where even very small corrections count, the electronic energy difference of the ground state triplet and the first exited state π 8 singlet is 0.5 kcal/mol (the ΔH 0 value is 0.6 kcal/mol).

References

  1. Shiomi D, Tamura M, Sawa H, Kato R, Kinoshita M (1993) J Phys Soc Jpn 62:289–300

    Article  CAS  Google Scholar 

  2. Tomioka H (2003) Pure Appl Chem 75:1041–1047

    Article  CAS  Google Scholar 

  3. Huai P, Shimoi Y, Abe S (2005) Synth Met 152:469–472

    Article  CAS  Google Scholar 

  4. Tanaka H, Ise T, Shiomi D, Sato K, Takui T (2006) J Low Temp Phys 142:605–608

    Article  CAS  Google Scholar 

  5. Numata Y, Inoue K, Baranov N, Kurmoo M, Kikuchi K (2007) J Am Chem Soc 129:9902–9909

    Article  CAS  Google Scholar 

  6. Ciofini I, Lainé PP, Zamboni M, Daul CA, Marvaud V, Adamo C (2007) Chem Eur J 13:5360–5377

    Article  CAS  Google Scholar 

  7. Hayakawa K, Ise T, Shiomi D, Sato K, Takui T (2006) J Low Temp Phys 142:589–592

    Article  Google Scholar 

  8. Iwamura H (2013) Polyhedron 66:3–14

    Article  CAS  Google Scholar 

  9. Abe M (2013) Chem Rev 113:7011–7088

    Article  CAS  Google Scholar 

  10. Gleiter R, Hyla-Kryspin I, Pfeifer KH (1995) J Org Chem 60:5878–5883

    Article  CAS  Google Scholar 

  11. Jiao H, Frapper G, Halet JF, Saillard JY (2001) J Phys Chem A 105:5945–5947

    Article  CAS  Google Scholar 

  12. Zhou X, Hrovat DA, Gleiter R, Borden WT (2009) Mol Phys 107:863–870

    Article  CAS  Google Scholar 

  13. Zhou X, Hrovat DA, Borden WT (2010) J Phys Chem A 114:1304–1308

    Article  CAS  Google Scholar 

  14. Guo JC, Hou GL, Li SD, Wang XB (2012) J Phys Chem Lett 3:304–308

    Article  CAS  Google Scholar 

  15. Bao X, Zhou X, Lovitt CF, Venkatraman A, Hrovat DA, Gleiter R, Hoffmann R, Borden WT (2012) J Am Chem Soc 134:10259–10270

    Article  CAS  Google Scholar 

  16. Bao X, Hrovat DA, Borden WT, Wang XB (2013) J Am Chem Soc 135:4291–4298

    Article  CAS  Google Scholar 

  17. Bao X, Hrovat DA, Borden WT (2013) Chem Eur J 19:5687–5693

    Article  CAS  Google Scholar 

  18. Zhang J, Hrovat DA, Sun Z, Bao X, Borden WT, Wang XB (2013) J Phys Chem A 117:7841–7846

    Article  CAS  Google Scholar 

  19. Kozuch S, Hrovat DA, Borden WT (2013) J Am Chem Soc 135:19282–19291

    Article  CAS  Google Scholar 

  20. Varga Z, Truhlar DG (2015) (to be published)

  21. Stanton JF (1994) J Chem Phys 101:371–374

    Article  CAS  Google Scholar 

  22. Yuan H, Cremer D (2000) Chem Phys Lett 324:389–402

    Article  CAS  Google Scholar 

  23. Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394

    Article  Google Scholar 

  24. Jacob CR, Reiher M (2012) Int J Quantum Chem 112:3661–3684

    Article  CAS  Google Scholar 

  25. Yamaguchi K, Yoshioka Y, Fueno T (1977) Chem Phys Lett 46:360–365

    Article  CAS  Google Scholar 

  26. Yamaguchi K, Yoshioka Y, Takatsuka K, Fueno T (1978) Theor Chim Acta 48:185–206

    Article  CAS  Google Scholar 

  27. Yamaguchi K, Takahara Y, Fueno T, Houk KN (1988) Theor Chim Acta 73:337–364

    Article  CAS  Google Scholar 

  28. Yamanaka S, Kawakami T, Nagao H, Yamaguchi K (1994) Chem Phys Lett 231:25–33

    Article  CAS  Google Scholar 

  29. Kitagawa Y, Saito T, Ito M, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K (2007) Chem Phys Lett 442:445–450

    Article  CAS  Google Scholar 

  30. Kitagawa Y, Saito T, Ito M, Nakanishi Y, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K (2007) Int J Quantum Chem 107:3094–3102

    Article  CAS  Google Scholar 

  31. Saito T, Kitagawa Y, Shoji M, Nakanishi Y, Ito M, Kawakami T, Okumura M, Yamaguchi K (2008) Chem Phys Lett 456:76–79

    Article  CAS  Google Scholar 

  32. Saito T, Nishihara S, Kataoka Y, Nakanishi Y, Matsui T, Kitagawa Y, Kawakami T, Okumura M, Yamaguchi K (2009) Chem Phys Lett 483:168–171

    Article  CAS  Google Scholar 

  33. Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Shoji M, Koizumi K, Kawakami T, Okumura M, Yamaguchi K (2009) Int J Quantum Chem 109:3641–3648

    Article  CAS  Google Scholar 

  34. Saito T, Kataoka Y, Nakanishi Y, Matsui T, Kitagawa Y, Kawakami T, Okumura M, Yamaguchi K (2010) Chem Phys 368:1–6

    Article  CAS  Google Scholar 

  35. Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Matsui T, Kawakami T, Okumura M, Yamaguchis K (2010) Int J Quantum Chem 110:3053–3060

    Article  CAS  Google Scholar 

  36. Coucouvanis D, Hollander FJ, West R, Eggerding D (1974) J Am Chem Soc 96:3006–3008

    Article  CAS  Google Scholar 

  37. Seitz G, Mann K, Schmiedel R, Matusch R (1975) Chem-Ztg 99:90–91

    CAS  Google Scholar 

  38. Eggerding D, West R (1976) J Org Chem 41:3904–3909

    Article  CAS  Google Scholar 

  39. Seitz G, Mann K, Schmiedel R, Matusch R (1979) Chem Ber 112:990–999

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2006) Theor Chem Acc 120:215–241

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.1; Gaussian, Inc., Wallingford, CT

  42. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  43. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theory Comput 8:527–541

    Article  CAS  Google Scholar 

  44. Wiberg K (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  45. Lee TJ, Rice HE, Scuseria GE, Schaefer HF III (1989) Theor Chim Acta 75:81–98

    Article  CAS  Google Scholar 

  46. Lee TJ, Taylor PR (1989) Int J Quantum Chem 23:199–207

    CAS  Google Scholar 

  47. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) WIREs Comput Mol Sci 2:242–253

    Article  CAS  Google Scholar 

  48. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2012) MOLPRO, version 2012.1, a package of ab initio programs, see http://www.molpro.net

  49. Knowles, PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219-5227 (Erratum: (2000) J Chem Phys 112:3106–3107)

  50. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2872–2887

    Article  CAS  Google Scholar 

  51. Papajak E, Leverentz HR, Zheng J, Truhlar DG (2009) J Chem Theory Comput 5:1197–1202

    Article  CAS  Google Scholar 

  52. Lu T, Chen F (2012) J Comp Chem 33:580–592, see https://multiwfn.codeplex.com

  53. Mayer I (1983) Chem Phys Lett 97:270–274

    Article  CAS  Google Scholar 

  54. Mayer I, Salvador P (2004) Chem Phys Lett 383:368–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by computing time grants from Minnesota Supercomputing Institute. DGT acknowledges support from the U. S. Department of Energy, Office of Basic Energy Sciences, under Grant No. DE-SC0008666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Varga.

Additional information

This paper is dedicated to Professor Magdolna Hargittai on the occasion of her 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, Z., Truhlar, D.G. Singlet–triplet competition in the low-lying energy states of C4O4−n S n (n = 1–3) molecules. Struct Chem 26, 1229–1240 (2015). https://doi.org/10.1007/s11224-015-0633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0633-5

Keywords

Navigation