Skip to main content

Advertisement

Log in

Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Beta-site amyloid precursor protein cleaving enzyme (BACE-1) is a well-known therapeutic target for Alzheimer disease (AD) due to its characteristic role in the pathogenesis of AD. Numerous researches have been focused on the design and development of potent peptidic and non-peptidic BACE-1 inhibitors. In the present contribution, a series of experimentally validated biflavonoid BACE-1 inhibitors (121) were subjected to our structure-based molecular modeling studies. Binding modes were elucidated through molecular docking in the active site of the enzyme. Relatively good correlations between the theoretical and experimental binding affinities could be achieved (R 2 = 0.61). Analysis of intermolecular binding energy components was performed via functional B3LYP in association with split-valence basis set using polarization functions (Def2-SVP), and structure-binding relationships were further elucidated through ligand–residue binding energies. Since little studies have been performed on the modeling and structure activity/binding relationships of biflavonoid structures as BACE-1 inhibitors, the results of this study may be useful in further extending the scope of biflavonoid structures as potential anti-Alzheimer scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Messi B, Ndjoko-Ioset K, Hertlein-Amslinger B, Lannang AM, Nkengfack AE, Wolfender JL, Hostettmann K, Bringmann G (2012) Molecules 17:6114–6125

    Article  CAS  Google Scholar 

  2. Anand P, Singh B (2013) Med Chem Res 22:3061–3075

    Article  CAS  Google Scholar 

  3. Oliveira R, Camara CA, de Agra MF, Silva TM (2012) Nat Prod Commun 7:1597–1600

    CAS  Google Scholar 

  4. Osorio E, Londoño J, Bastida J (2013) Molecules 18:6092–6100

    Article  Google Scholar 

  5. Miki K, Nagai T, Suzuki K, Tsujimura R, Koyama K, Kinoshita K, Furuhata K, Yamada H, Takahashi K (2007) Bioorg Med Chem Lett 17:772–775

    Article  CAS  Google Scholar 

  6. Ye Y, Xing H, Guo Y (2013) Indian J Exp Biol 51:458–463

    CAS  Google Scholar 

  7. Adaramoye O (2012) Afr Health Sci 12:498–506

    CAS  Google Scholar 

  8. Li S, Zhao M, Li Y, Sui Y, Yao H, Huang L, Lin X (2014) Phytochem Anal 25:127–133

    Article  Google Scholar 

  9. Lin Y, Flavin MT, Cassidy CS, Mar A, Chen FC (2001) Bioorg Med Chem Lett 11:2101–2104

    Article  CAS  Google Scholar 

  10. Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F, Olusegun A (2014) Asian Pac J Trop Med 7:97–104

    Article  CAS  Google Scholar 

  11. Kaikabo A, Eloff J (2011) J Ethnopharmacol 138:253–255

    Article  CAS  Google Scholar 

  12. Sagrera G, Bertucci A, Vazquez A, Seoane G (2011) Bioorg Med Chem 19:3060–3073

    Article  CAS  Google Scholar 

  13. Park H, Kim YH, Chang HW, Kim HP (2006) J Pharm Pharmacol 58:1661–1667

    Article  CAS  Google Scholar 

  14. Jager A, Saaby L (2011) Molecules 16:1471–1485

    Article  CAS  Google Scholar 

  15. Kang S, Lee JY, Choi YK, Song SS, Kim JS, Jeon SJ, Han YN, Son KH, Han BH (2005) Bioorg Med Chem Lett 15:3588–3591

    Article  CAS  Google Scholar 

  16. Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS (2011) Biochemistry 50:2445–2455

    Article  CAS  Google Scholar 

  17. Sasaki H, Miki K, Kinoshita K, Koyama K, Juliawaty LD, Achmad SA, Hakim EH, Kaneda M, Takahashi K (2010) Bioorg Med Chem Lett 20:4558–4560

    Article  CAS  Google Scholar 

  18. Shrestha S, Park JH, Lee DY, Cho JG, Seo WD, Kang HC, Yoo KH, Chung IS, Jeon YJ, Yeon SW, Baek NI (2012) J Korean Soc Appl Bi 55:557–562

    Article  CAS  Google Scholar 

  19. Vassar R (2002) Adv Drug Deliv Rev 54:1589–1602

    Article  CAS  Google Scholar 

  20. Albert J (2009) Prog Med Chem 48:133–161

    Article  CAS  Google Scholar 

  21. Ziora Z, Kimura T, Kiso Y (2006) Drugs Future 31:53–63

    Article  CAS  Google Scholar 

  22. Razzaghi-Asl N, Firuzi O, Hemmateenejad B, Javidnia K, Edraki N, Miri R (2013) Bioorg Med Chem 21:6893–6909

    Article  CAS  Google Scholar 

  23. Razzaghi-Asl N, Ebadi A, Edraki N, Shahabipour S, Miri R (2013) Med Chem Res 22:3259–3269

    Article  CAS  Google Scholar 

  24. Morris G, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  25. Sanner M (1999) J Mol Graphics Mod 17:57–61

    CAS  Google Scholar 

  26. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  27. Molegro molecular viewer. http://www.molegro.com

  28. Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Biochim Biophys Acta 1780:819–825

    Article  CAS  Google Scholar 

  29. Fogarasi G, Zhou X, Taylor PW, Pulay PJ (1992) Am Chem Soc 114:8191–8201

    Article  CAS  Google Scholar 

  30. Klamt A, Schüürmann GJ (1993) Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  31. Neese F (2011) ORCA-an ab initio, density functional and semiempirical program package. University of Bonn

  32. Putta S, Beroza P (2007) Curr Top Med Chem 7:1514–1524

    Article  CAS  Google Scholar 

  33. Jorgensen W (2004) Science 303:1813–1818

    Article  CAS  Google Scholar 

  34. Laurie R, Alasdair T, Jackson R (2006) Curr Protein Pept Sci 7:395–406

    Article  CAS  Google Scholar 

  35. Sellers R, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR (2010) Bioorg Med Chem Lett 18:6822–6856

    Article  CAS  Google Scholar 

  36. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  37. Cho JK, Ryu YB, Curtis-Long MJ, Kim JY, Kim D, Lee S, Lee WS, Park KH (2011) Bioorg Med Chem Lett 21:2945–2948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by research council of Ardabil University of Medical Sciences.

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Razzaghi-Asl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaghi-Asl, N., Sepehri, S., Ebadi, A. et al. Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct Chem 26, 607–621 (2015). https://doi.org/10.1007/s11224-014-0523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0523-2

Keywords

Navigation