Skip to main content
Log in

Transition metal complexes with thiosemicarbazide-based ligands. Part 61. Comparative analysis of structural properties of the pyridoxal thiosemicarbazone ligands. Crystal structure of PLTSC·HCl·2H2O and its complex [Fe(PLTSC)Cl2(H2O)]Cl

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel pyridoxal thiosemicarbazone (PLTSC) compound, exhibiting ligating properties, of the formula PLTSC·HCl·2H2O (1) was synthesized and characterized by X-ray analysis. The PLTSC ligand 1 displays significantly different conformation in comparison to the five previously reported compounds of this type. The structural properties of six PLTSC ligands in different conformations were compared in order to establish the structural differences and understand the factors that facilitate particular conformations. The analysis indicated great structural flexibility of the PLTSC ligands. The PLTSC ligand 1 is essentially a planar molecule with the r.m.s deviation of all non-H atoms equal to 0.06 Å. Consequently, the molecules of 1 form a layered three-dimensional structure which is stabilized by a variety of hydrogen bonds: O–H⋯O, O–H⋯N, O–H⋯Cl, O–H⋯S, N–H⋯O, N–H⋯N, N–H⋯Cl, N–H⋯S. In addition, the crystal structure of the Fe(III) complex with the ligand 1 of the formula [Fe(PLTSC)Cl2(H2O)]Cl was resolved by single-crystal X-ray analysis and structural properties of this octahedral complex were discussed and compared to those of uncoordinated PLTSC ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beraldo H, Gambino D (2004) Mini Rev Med Chem 4:31–39

    Article  CAS  Google Scholar 

  2. Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR (2009) J Med Chem 52:5271–5294

    Article  CAS  Google Scholar 

  3. Kalinowski DS, Richardson DR (2005) Pharmacol Rev 57:547–583

    Article  CAS  Google Scholar 

  4. Gómez Quiroga A, Navarro Ranninger C (2004) Coord Chem Rev 248:119–133

  5. Casas JS, García-Tasende MS, Sordo J (2000) J Coord Chem Rev 209:197–261

    Article  CAS  Google Scholar 

  6. Lobana TS, Sharma R, Bawa G, Khanna S (2009) J Coord Chem Rev 253:977–1055

    Article  CAS  Google Scholar 

  7. Yemeli Tido EW, Faulmann C, Roswanda R, Meetsma A, van Koningsbruggen PJ (2010) Dalton Trans 39:1643–1651

    Article  Google Scholar 

  8. Littler E, Oberg B (2005) Antivir Chem Chemother 16:155–168

    CAS  Google Scholar 

  9. Moorthy NSHN, Cerqueira NMFSA, Ramos MJ, Fernandes PA (2013) Recent Pat Anticancer Drug Discov 8:168–182

    Article  CAS  Google Scholar 

  10. Leovac VM, Jevtović VS, Jovanović LjS, Bogdanović GA (2005) J Serb Chem Soc 70:393–422

    Article  CAS  Google Scholar 

  11. Casas JS, Couce MD, Sordo J (2012) Coord Chem Rev 256:3036–3062

    Article  CAS  Google Scholar 

  12. Belicchi-Ferrari M, Bisceglie F, Casoli C, Durot S, Morgenstern-Badarau I, Pelosi G, Pilotti E, Pinelli S, Tarasconi P (2005) J Med Chem 48:1671–1675

    Article  CAS  Google Scholar 

  13. Belicchi-Ferrari M, Bisceglie F, Leporati E, Pelosi G, Tarasconi P (2002) Bull Chem Soc Jpn 75:781–788

    Article  Google Scholar 

  14. Belicchi-Ferrari M, Bisceglie F, Pelosi G, Tarasconi P, Albertini R, Dall’Aglio P, Pinelli S, Bergamo A, Savac G (2004) J Inorg Biochem 98:301–312

    Article  Google Scholar 

  15. Allen FH (2002) Acta Crystallogr Sect B 58:380–388

    Article  Google Scholar 

  16. Belicchi-Ferrari M, Gasparri GF, Leporati E, Pelizzi C, Tarasconi P, Tosi G (1986) J Chem Soc Dalton Trans 2455–2461

  17. Vrdoljak V, Pisk J, Prugovečki B, Matković-Čalogović D (2009) Inorg Chim Acta 362:4059–4064

    Article  CAS  Google Scholar 

  18. Abram U, Ortner K, Gust R, Sommer K (2000) J Chem Soc Dalton Trans 5:735–744

    Article  Google Scholar 

  19. Agilent Technologies (2013) CrysAlisPro Software system, version 1.171.36.20, Agilent Technologies UK Ltd., Oxford, UK

  20. Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G, Spagna R (2003) J Appl Crystallogr 36:1103

    Article  CAS  Google Scholar 

  21. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  22. Enraf–Nonius (1989) CAD-4 Software, version 5.0, Enraf–Nonius, Delft, The Netherlands

  23. Enraf–Nonius (1994) CAD-4 Express Software, Enraf–Nonius, Delft, The Netherlands

  24. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  25. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  26. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  27. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  28. Nardelli M (1995) J Appl Crystallogr 28:659

    Article  CAS  Google Scholar 

  29. Geary WJ (1971) Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  30. Mohan M, Madhuranath PH, Kumar A, Kumar M, Jha NK (1989) Inorg Chem 28:96–99

    Article  CAS  Google Scholar 

  31. Kalaivani P, Prabhakaran R, Ramachandran E, Dallemer F, Paramaguru G, Renganathan R, Poornima P, Vijaya Padma V, Natarajan K (2012) Dalton Trans 41:2486–2499

    Article  CAS  Google Scholar 

  32. Maurya MR, Kumar A, Abid M, Azam A (2006) Inorg Chim Acta 359:2439–2447

    Article  CAS  Google Scholar 

  33. Floquet S, Carmen Munoz M, Guillot R, Riviere E, Blain G, Real JA, Boillot ML (2009) Inorg Chim Acta 362:56–64

    Article  CAS  Google Scholar 

  34. Francuski BM, Novaković SB, Bogdanović GA (2011) CrystEngComm 13:3580–3591

    Article  CAS  Google Scholar 

  35. Yemeli Tido EW, Vertelman AJM, Meetsma A, van Koningsbruggen PJ (2007) Inorg Chim Acta 360:3896–3902

    Article  CAS  Google Scholar 

  36. Yemeli Tido EW, Alberda van Ekenstein GOR, Meetsma A, van Koningsbruggen PJ (2008) Inorg Chem 47:143–153

    Article  CAS  Google Scholar 

  37. Jaćimović ŽK, Leovac VM, Giester G, Tomić ZD, Mészáros Szécsényi K (2007) J Therm Anal Cal 90:549–555

    Article  Google Scholar 

  38. Belicchi Ferrari M, Fava GG, Pelizzi C, Tarasconi C, Tosi G (1987) J Chem Soc Dalton Trans 1:227–233

  39. Sen S, Shit S, Mitra S, Batten SR (2008) Struct Chem 19:137–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Education and Science, of the Republic of Serbia (Grant No. 172014) and the Provincial Secretariat for Science and Technological Development of Vojvodina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vukadin M. Leovac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 971 kb)

Appendix

Appendix

Electronic supplementary information file contains additional collection of Figures S1–S5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivković, S.A., Vojinović-Ješić, L.S., Leovac, V.M. et al. Transition metal complexes with thiosemicarbazide-based ligands. Part 61. Comparative analysis of structural properties of the pyridoxal thiosemicarbazone ligands. Crystal structure of PLTSC·HCl·2H2O and its complex [Fe(PLTSC)Cl2(H2O)]Cl. Struct Chem 26, 269–277 (2015). https://doi.org/10.1007/s11224-014-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0491-6

Keywords

Navigation