Skip to main content

Advertisement

Log in

The resonance of cation and anion radicals with multiple conjugated bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work describes a computational study of the electronic structure of anion and cation radicals of some conjugated systems—buta-1,3-diyne, hexa-1,3,5-triyne, buta-1,3-diene, and hexa-1,3,5-triene. The main purpose was to investigate how the gain or loss of one electron affected the geometry and, electron and spin densities. The NBO, QTAIM, ELF, and LMO-EDA methods helped to study the electronic structure of the target compounds and their radicals. Several methods indicate an increased electronic delocalization upon ionization. The unpaired electron is preferentially localized at the terminal carbon atoms in radicals. The calculated isodesmic and homodesmotic bond separation reactions indicated that disruption of the conjugation system prompted higher energy at the radicals as compared with neutral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hopf H (2000) Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  2. Orenha RP, Galembeck SE, Parreira RLT (2013) Resonance in compounds with multiple conjugated bonds. Struct Chem. doi:10.1007/s11224-012-0138-4

    Google Scholar 

  3. Roman M, Kaczor A, Dobrowolski JC, Baranska M (2013) Structural changes of beta-carotene and some retinoid pharmaceuticals induced by environmental factors. J Mol Struct. doi:10.1016/j.molstruc.2012.12.038

    Google Scholar 

  4. Tang WL, Zhang XL, Bally T (1993) How ionization affects chemical bonding: IR-spectra and SQM force-field of the butadiene cation radical. J Phys Chem. doi:10.1021/j100119a020

    Google Scholar 

  5. Keszthelyi T, Wilbrandt R, Bally T (1996) Radical cation of 1,3-butadiene: Resonance Raman spectrum of the h(6) isotopomer. J Phys Chem. doi:10.1021/jp9618385

    Google Scholar 

  6. Bally T, Roth K, Tang W, Schrock RR, Knoll K, Park LY (1992) Stable polarons in polyacetylene oligomers: optical-spectra of long polyene radical cations. J Am Chem Soc. doi:10.1021/ja00033a020

    Google Scholar 

  7. Sarma AD, Mallick AR, Ghosh AK (2010) IJPSR 1:185–192

    Google Scholar 

  8. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol. doi:10.1016/0041-008x(92)90273-u

    Google Scholar 

  9. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry. doi:10.1016/s0031-9422(00)00235-1

    Google Scholar 

  10. Chiang YM, Chuang DY, Wang SY, Kuo YH, Tsai PW, Shyur LF (2004) Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J Ethnopharmacol. doi:10.1016/j.jep.2004.08.010

    Google Scholar 

  11. Lee YS, Lim SS, Shin KH, Kim YS, Ohuchi K, Jung SH (2006) Biol Pharm Bull 29:1028–1031

    Article  CAS  Google Scholar 

  12. Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res. doi:10.1016/j.phrs.2008.02.005

    Google Scholar 

  13. Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem. doi:10.1016/j.bmc.2006.01.003

    Google Scholar 

  14. Wang J, Wang N, Yao X, Kitanaka S (2007) Asian J Tradit Med 2:23–29

    CAS  Google Scholar 

  15. DeTommasi N, Pizza C, Aquino R, Cumanda J, Mahmood N (1997) Flavonol and chalcone ester glycosides from Bidens leucantha. J Nat Prod. doi:10.1021/np960572q

    Google Scholar 

  16. Lawrence NJ, Rennison D, McGown AT, Hadfield JA (2003) The total synthesis of an aurone isolated from Uvaria hamiltonii: Aurones and flavones as anticancer agents. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2003.07.003

    Google Scholar 

  17. Kayser O, Kiderlen AF, Brun R (2001) In vitro activity of aurones against plasmodium falciparum strains K1 and NF54. Planta Med. doi:10.1055/s-2001-18356

    Google Scholar 

  18. Kayser O, Kiderlen AF, Folkens U, Kolodziej H (1998) Planta Med 65:316–319

    Article  Google Scholar 

  19. Wat CK, Biswas RK, Graham EA, Bohm L, Towers GHN, Waygood ER (1979) Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens-pilosa L. J Nat Prod. doi:10.1021/np50001a005

    Google Scholar 

  20. Garavelli M, Bernardi F, Robb MA, Olivucci M (1999) The short-chain acroleiniminium and pentadieniminium cations: towards a model for retinal photoisomerization. A CASSCF/PT2 study. J Mol Struct. doi:10.1016/S0166-1280(98)00393-5

    Google Scholar 

  21. Keszthelyi T, Wilbrandt R, Bally T (1997) Resonance Raman and quantum chemical studies of short polyene radical cations. J Mol Struct. doi:10.1016/s0022-2860(96)09632-9

    Google Scholar 

  22. Bushby RJ, McGill DR, Ng KM, Taylor N (1996) Coulombic effects in radical-cation-based high-spin polymers. Chem Commun. doi:10.1039/cc9960002641

    Google Scholar 

  23. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed. doi:10.1002/1521-3773(20010716)40:14<2574:AID-ANIE2574>3.0.CO;2-N

    Google Scholar 

  24. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed. doi:10.1002/1521-3773(20010716)40:14<2581:aid-anie2581>3.0.co;2-2

    Google Scholar 

  25. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed. doi:10.1002/1521-3773(20010716)40:14<2591:aid-anie2591>3.0.co;2-0

    Google Scholar 

  26. Guaratini T, Vessecchi RL, Lavarda FC, Campos P, Naal Z, Gates PJ, Lopes NP (2004) New chemical evidence for the ability to generate radical molecular ions of polyenes from ESI and HR-MALDI mass spectrometry. Anal Chem. doi:10.1039/b412154f

    Google Scholar 

  27. Vanberkel GJ, McLuckey SA, Glish GL (1992) Electrochemical origin of radical cations observed in electrospray ionization mass-spectra. Anal Chem. doi:10.1021/ac00038a015

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 (Revision A.1). Gaussian Inc., Wallingford, CT

    Google Scholar 

  29. Weinhold F, Carpenter JE (1988) The Structure of Small Molecules and Ions. Plenum, New York

    Google Scholar 

  30. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  31. Bader RFW (1991) A quantum-theory of molecular structure and its applications. Chem Rev. doi:10.1021/cr00005a013

    Google Scholar 

  32. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A. doi:10.1021/jp981794v

    Google Scholar 

  33. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A. doi:10.1021/jp9805048

    Google Scholar 

  34. Keith TA (2014) AIMAll (Version 14.04.17), TK Gristmill Software, Overland Park, KS

  35. Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: The electron localization function. Angew Chem Int Edit. doi:10.1002/anie.199718081

    Google Scholar 

  36. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod. Universite Pierre et Marie Curie Package, Paris, France

  37. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys. doi:10.1063/1.3159673

    Google Scholar 

  38. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Montgomery JA (1993) General atomic and molecular electronic-structue system. J Comput Chem. doi:10.1002/jcc.540141112

    Google Scholar 

  39. Gorelsky SI (2012) Complexes with a single metal–metal bond as a sensitive probe of quality of exchange-correlation functionals. J Chem Theory Comput. doi:10.1021/ct3000124

    Google Scholar 

  40. Dennington R, Keith T, Millam J (2009) GaussView (Version 5). Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  41. Li Z, Wan H, Shi Y, Ouyang P (2004) Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J Chem Inf Comput Sci. doi:10.1021/ci049794h

  42. Zhurko GA, Zhurko DA (2005) ChemCraft: tool for treatment of chemical data, Lite version build 08 (freeware). Plimus, San Diego, CA

  43. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno

  44. Linstrom PJ, Mallard WG (2014) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg

  45. Poater J, Sola M, Duran M, Fradera X (2002) The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory. Theor Chem Acc. doi:10.1007/s00214-002-0356-8

    Google Scholar 

  46. Ichikawa H, Kagawa H (1997) Analysis of chemical phenomena by solving the constrained Hartree-Fock equation.I. Influence of geometry change on the energy of pi electrons in conjugated hydrocarbons. B Chem Soc Jpn. doi:10.1246/bcsj.70.727

    Google Scholar 

  47. Vessecchi R, Galembeck SE (2008) Evaluation of the enthalpy of formation, proton affinity, and gas-phase basicity of gamma-butyrolactone and 2-pyrrolidinone by isodesmic reactions. J Phys Chem A. doi:10.1021/jp800427q

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian agencies CAPES/PROAP, CNPq, (Grant 481560/2010-6), and São Paulo Research Foundation (FAPESP) (Grant 2008/02677-0) for financial support. SEG thanks CNPq for a research fellowship (Grant 304447/2010-2). RPO thanks FAPESP for undergraduate and PhD fellowships (Grants 2009/08712-4 and 2011/20351-7). We also acknowledge Dr. Cynthia M. C. Prado Manso for revising the manuscript and MSc. Ali Faez Taha for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio E. Galembeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orenha, R.P., Vessecchi, R. & Galembeck, S.E. The resonance of cation and anion radicals with multiple conjugated bonds. Struct Chem 26, 365–373 (2015). https://doi.org/10.1007/s11224-014-0490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0490-7

Keywords

Navigation