Skip to main content
Log in

The influence of the hydroxy and methoxy functional groups on the energetic and structural properties of naphthaldehyde as evaluated by both experimental and computational methods

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work addresses an energetic and structural study regarding hydroxy and methoxy naphthaldehyde derivatives, based both on experimental and computational research. The massic energy of combustion and vapor pressures at different temperatures were measured by static-bomb combustion calorimetry and Knudsen mass-loss effusion techniques, respectively. The computational studies were performed using the G3(MP2)//B3LYP method, an appropriate theoretical procedure for these kinds of compounds. The combination of experimental and computational data enabled the determination of the enthalpies, entropies, and Gibbs energies of sublimation and formation of these compounds both in the crystal and gas phase. Complementing the experimental studies, the intramolecular hydrogen bonding energetics of all three o-hydroxynaphthaldehydes and their corresponding tautomeric structures were evaluated. Additionally, the gas-phase Gibbs free energy and enthalpy of formation of the radical and anion as well as the O–H homolytic bond dissociation enthalpy and gas-phase acidity were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salman SR (1986) Spectrochim Acta A 42:409–410

    Article  Google Scholar 

  2. Chowdhury P, Panja S, Chakravorti S (2003) J Phys Chem A 107:83–90

    Article  CAS  Google Scholar 

  3. Chowdhury P, Chakravorti S (2004) Chem Phys Lett 395:103–108

    Article  CAS  Google Scholar 

  4. Martínez RF, Ávalos M, Babiano R, Cintas P, Jiménez JL, Light ME, Palacios JC (2011) Org Biomol Chem 9:8268–8275

    Article  Google Scholar 

  5. McCarthy A, Ruth AA (2011) Phys Chem Chem Phys 13:18661–18670

    Article  CAS  Google Scholar 

  6. Han K-L, Zhao G-J (2011) Hydrogen bonding and transfer in the excited state, vol 1. Wiley, Chichester

    Google Scholar 

  7. Kwon JE, Park SY (2011) Adv Mater 23:3615–3642

    Article  CAS  Google Scholar 

  8. Sytnik A, Del Valle JC (1995) J Phys Chem 99:13028–13032

    Article  CAS  Google Scholar 

  9. Sytnik A, Kasha M (1994) Proc Natl Acad Sci USA 91:8627–8630

    Article  CAS  Google Scholar 

  10. Sytnik A, Gormin D, Kasha M (1994) Proc Natl Acad Sci USA 91:11968–11972

    Article  CAS  Google Scholar 

  11. Sytnik A, Litvinyuk I (1996) Proc Natl Acad Sci USA 93:12959–12963

    Article  CAS  Google Scholar 

  12. Yguerabide J, Foster MC (1981) In: Grell E (ed) Membrane spectroscopy, molecular biology, biochemistry and biophysics, vol 31. Springer, Berlin

    Google Scholar 

  13. Dennison SM, Guharay J, Sengupta PK (1999) Spectrochim Acta A 55:1127–1132

    Article  Google Scholar 

  14. Kovács A, Szabó A, Hargittai I (2002) Acc Chem Res 35:887–894

    Article  Google Scholar 

  15. Douhal A, Kim SK, Zewail AH (1995) Nature 378:260–263

    Article  CAS  Google Scholar 

  16. Singh RB, Mahanta S, Kar S, Guchhait N (2007) Chem Phys 331:373–384

    Article  CAS  Google Scholar 

  17. Salman SR, Lindon JC, Farrant RD, Carpenter TA (1993) Magn Reson Chem 31:991–994

    Article  CAS  Google Scholar 

  18. Dziembowska T, Rozwadowski Z, Filarowski A, Hansen PE (2001) Magn Reson Chem 39:S67–S80

    Article  CAS  Google Scholar 

  19. Morgan MA, Orton E, Pimentel GC (1990) J Phys Chem 94:7927–7935

    Article  CAS  Google Scholar 

  20. Nagaoka S, Nagashima U, Ohta N, Fujita M, Takemura T (1988) J Phys Chem 92:166–171

    Article  CAS  Google Scholar 

  21. Nagaoka S, Hirota N, Sumitani M, Yoshihara K, Lipczynska-Kochany E, Iwamura H (1984) J Am Chem Soc 106:6913–6916

    Article  CAS  Google Scholar 

  22. Catalan J, Tribio F, Acuña AU (1982) J Phys Chem 86:303–306

    Article  CAS  Google Scholar 

  23. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G (1988) J Chem Thermodyn 20:969–974

    Article  CAS  Google Scholar 

  24. Ribeiro da Silva MAV, Ferrão MLCCH, Lopes AJM (1993) J Chem Thermodyn 25:229–235

    Article  CAS  Google Scholar 

  25. Ribeiro da Silva MAV, Amaral LMPF, Santos AFLOM, Gomes JRB (2006) J Chem Thermodyn 38:748–755

    Article  CAS  Google Scholar 

  26. Silva ALR, Freitas VLS, Ribeiro da Silva MDMC (2014) Chemosphere 107:203–210

    Article  CAS  Google Scholar 

  27. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  28. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G (1984) Rev Port Quím 26:163–172

    CAS  Google Scholar 

  29. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G (1984) J Chem Thermodyn 16:1149–1155

    Article  CAS  Google Scholar 

  30. Certificate of Analysis, Standard Reference Material® 39j Benzoic Acid, Calorimetric Standard (1985) National Institute of Standards & Technology, Washington, DC

  31. Copps J, Jessup RS, Van Nes K (1956) In: Rossini FD (ed) Experimental Thermochemistry. Interscience, New York

    Google Scholar 

  32. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nutall RL (1982) J Phys Chem Ref 11(2):1–392

    Google Scholar 

  33. Washburn EW (1933) J Res Natl Bur Stand 10:525–558

    Article  CAS  Google Scholar 

  34. Yaws CL, Chen DH (2008) In: Yaws CL (ed) Thermophysical properties of chemicals and hydrocarbons. William Andrew Inc., Norwich

    Google Scholar 

  35. Look for Chemicals, http://www.lookchem.com/2-Hydroxy-1-naphthaldehyde. Accessed March 2014

  36. Hubbard WN, Scott DW, Waddington G (1956) In: Rossini FD (ed) Experimental Thermochemistry. Interscience, New York

    Google Scholar 

  37. Wieser ME, Holden N, Coplen TB, Böhlke JK, Berglund M, Brand WA, De Bièvre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O´Connor G, Walczyk T, Yoneda S, Zhu X-Z (2013) Pure Appl Chem 85:1047–1078

    Article  CAS  Google Scholar 

  38. Ribeiro da Silva MAV, Monte MJS (1990) Thermochim Acta 171:169–183

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian, Wallingford

    Google Scholar 

  40. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  41. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Keith TA (2013) AIMAll, version 13.11.04. TK Gristmill Software, Overland Park KS, USA (http://aim.tkgristmill.com/)

  44. Fleming I (2010) Molecular orbitals and organic chemical reactions, Reference Edition.Wiley, University of Cambridge

  45. Chase MW Jr (1998) J Phys Chem Ref Data Monograph 9:1–1951

    Google Scholar 

  46. Espinosa E, Molins E, Lecomye C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  47. Estácio SG, Couto PC, Costa Cabral BJ, Minas da Piedade ME, Martinho Simões JA (2004) J Phys Chem A 108:10834–10843

    Article  Google Scholar 

  48. Tobita S, Yamamoto M, Kurahayashi N, Tsukagoshi R, Nakamura Y, Shizuka H (1998) J Phys Chem A 102:5206–5214

    Article  CAS  Google Scholar 

  49. Ribeiro da Silva MDMC, Araújo NMR (2007) J Chem Thermodyn 39:1372–1376

    Article  CAS  Google Scholar 

  50. Ribeiro da Silva MDMC, Gonçalves MV, Monte MJS (2010) J Chem Thermodyn 42:472–477

    Article  CAS  Google Scholar 

  51. Goebbert DJ, Wenthold PG (2006) Int J Mass Spectrom 257:1–11

    Article  CAS  Google Scholar 

  52. Taylor BN, Kuyatt CE (1994) Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Technical Note 1297

  53. Cox JD, Wagman DD, Medvedev VA (1989) CODATA Key values for Thermodynamics. Hemisphere, New York

    Google Scholar 

  54. Monte MJS, Almeida ARRP, Matos MAR (2010) J Chem Eng Data 55:419–423

    Article  CAS  Google Scholar 

  55. Chickos JS, Hosseini S, Hesse DG, Liebman JF (1993) Struct Chem 4:271–278

    Article  CAS  Google Scholar 

  56. Irikura KK (2002) THERMO.PL. National Institute of Standards and Technology

  57. Pedley JB (1994) Thermochemical data and structures of organic compounds. Thermodynamics Research Centre, College Station

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to Fundo Europeu de Desenvolvimento Regional (FEDER) for financial support given to Centro de Investigação em Química da Universidade do Porto, (PEst-C/QUI/UI0081/2013) and to Programa Ciência 2008. VLSF thanks FCT for the post-doctoral grant SFRH/BPD/78552/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera L. S. Freitas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, L.M.P.F., Freitas, V.L.S., Gonçalves, J.F.R. et al. The influence of the hydroxy and methoxy functional groups on the energetic and structural properties of naphthaldehyde as evaluated by both experimental and computational methods. Struct Chem 26, 137–149 (2015). https://doi.org/10.1007/s11224-014-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0475-6

Keywords

Navigation