Skip to main content
Log in

A new strategy to tune the BNNT band gap upon adsorption of nitrobenzene and its p-substituted derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The BNNTs are known to have a constant band gap of 5.5 eV independent of geometrical parameters. The easy tailoring of band gap of BNNT still remains a challenging task. Our density functional theory-based investigations propose a robust method of tuning the BNNT band gap through its non-covalent functionalization by nitrobenzene derivatives. Our study suggests 52 % reduction in BNNT band gap after binding of nitrobenzene derivatives. Tuning the BNNT band gap after adsorption of nitrobenzene derivatives is shown to be possible within the range of 2.69–3.45 eV owing to remarkable sensitivity to the electron releasing or withdrawing capacity of the functional group attached to nitrobenzene. The specific trend observed in the band gap values (–NH2 > –OCH3 > –OH > –CH3 > –COOH > –CN) is guided by the inductive effect of the substituent attached to nitrobenzene. The present study confirms that the adsorption of nitrobenzene derivatives on the BNNT surface is exothermic and physical in nature. Since adsorption does not cause any structural deformations of the tube, therefore, this method offers advantages in terms of easy desorption and reusability of BNNT.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soltani A, Ahmadian N, Kanani Y, Dehnokhalaji A, Mighani H (2012) Ab initio investigation of the SCN chemisorption of single-walled boron nitride nanotubes. Appl Surf Sci 258:9536–9543

    Article  CAS  Google Scholar 

  2. Dong Q, Li XM, Tian WQ, Huang XR, Sun CC (2010) Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes. J Mol Struct 948:83–92

    Article  CAS  Google Scholar 

  3. Rimola A, Sodupe M (2013) Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature. Phys Chem Chem Phys 15:13190–13198

    Article  CAS  Google Scholar 

  4. Chang CW, Fennimore AM, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettel A (2006) Isotope effect on the thermal conductivity of individual boron nitride nanotubes. Phys Rev Lett 97:85901–85904

    Article  CAS  Google Scholar 

  5. Golberg D, Bando Y, Kurashima K, Sato T (2001) Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Mater 44:1561–1565

    Article  CAS  Google Scholar 

  6. Wei XL, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899

    Article  CAS  Google Scholar 

  7. Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mater 19:2413–2432

    Article  CAS  Google Scholar 

  8. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340

    Article  Google Scholar 

  9. Mousavi H, Kurdestany JM, Bagheri M (2012) Carbon dioxide detection by boron nitride nanotubes. Appl Phys A 108:283–289

    Article  CAS  Google Scholar 

  10. Peyghan AA, Baei MT, Moghimi M, Hashemian S (2012) Phenol adsorption study on pristine, Ga-, and In-doped (4,4) armchair single-walled boron nitride nanotubes. Comput Theor Chem 997:63–69

    Article  CAS  Google Scholar 

  11. Beheshtian J, Behzadi H, Esrafili MD, Shirvani BB, Hadipour NL (2010) A computational study of water adsorption on boron nitride nanotube. Struct Chem 21:903–908

    Article  CAS  Google Scholar 

  12. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) DFT-based reactivity study of (5,5) armchair boron nitride nanotube (BNNT). Chem Phys Lett 565:69–73

    Article  CAS  Google Scholar 

  13. Zhou X, Tian WQ, Wang XL (2010) Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sens Actuators B 151:56–64

    Article  CAS  Google Scholar 

  14. Singla P, Singhal S, Goel N (2013) Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface. Appl Surf Sci 283:881–887

    Article  CAS  Google Scholar 

  15. Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B 171:846–852

    Article  Google Scholar 

  16. Wang R, Zhu R, Zhang D (2008) Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett 467:131–135

    Article  CAS  Google Scholar 

  17. Xie Y, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotubes. Appl Surf Sci 258:6391–6397

    Article  CAS  Google Scholar 

  18. Beheshtian J, Peyghan AA, Tabar MB, Bagheri Z (2013) DFT study on the functionalization of a BN nanotube with sulfamide. Appl Surf Sci 266:182–187

    Article  CAS  Google Scholar 

  19. Chen Y, Hu CL, Li JQ, Jia GX, Zhang YF (2007) Theoretical study of O2 adsorption and reactivity on single-walled boron nitride nanotubes. Chem Phys Lett 449:149–154

    Article  CAS  Google Scholar 

  20. Akdim B, Kim SN, Naik RR, Maruyama B, Pender MJ, Pachter R (2009) Understanding effects of molecular adsorption at a single-wall boron nitride nanotubes interface from density functional theory calculations. Nanotechnology 20:355705–355712

    Article  CAS  Google Scholar 

  21. Zhao Y, Wu X, Yang J, Zeng XC (2011) Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Phys Chem Chem Phys 13:11766–11772

    Article  CAS  Google Scholar 

  22. Meng Y, Xiu P, Huang B, Wang Z, Zhang RQ, Zhou R (2014) A unique feature of chiral transition of a difluorobenzo[c]phenanthrene molecule confined in a boron-nitride nanotubes based on molecular dynamics simulations. Chem Phys Lett 591:265–267

    Article  CAS  Google Scholar 

  23. Zhao J, Ding Y (2010) Theoretical study of noncovalent functionalization of BN nanotubes by various aromatic molecules. Diam Relat Mater 19:1073–1077

    Article  CAS  Google Scholar 

  24. Beheshtian J, Soleymanabadi H, Peyghan AA, Bagheri Z (2013) A DFT study on the functionalization of a BN nanosheet with PC-X, (PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN). Appl Surf Sci 268:436–441

    Article  CAS  Google Scholar 

  25. Wei W, Sun R, Cui J, Wei Z (2010) Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite. Desalination 263:89–96

    Article  CAS  Google Scholar 

  26. Pan J, Guan B (2010) Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J Hazard Mater 183:341–346

    Article  CAS  Google Scholar 

  27. Wen Q, Chen Z, Lian J, Feng Y, Ren N (2012) Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM). J Hazard Mater 209:226–232

    Article  Google Scholar 

  28. Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  29. Fei HY, Liu XY, Ni YQ, Xu G (2004) Investigation on an acute nitrobenzene toxication. Occup Health 20:54

    Google Scholar 

  30. Zhang SQ, Sun JL, Gao Y (2007) Accident on an acute nitrobenzene toxication. Occup Health Emerg Rescue 25:36–41

    CAS  Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry (III) The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the Colic–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Frisch MJ, Truks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralata JE, Olgiaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghvachari K, Rendell A, Burrant JC, Iyengar SS, Morokuma K, Voth GA, Salvador P, Dapprich S, Dannenberg JJ, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Revision C01. Gaussian Inc, Wallingford

    Google Scholar 

  34. Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  35. Dai J, Giannozzi P, Yuan J (2009) Adsorption of pairs of NO x molecules on single-walled carbon nanotubes and formation of NO + NO3 from NO2. Surf Sci 603:3234–3238

    Article  CAS  Google Scholar 

  36. Wu X, An W, Zeng XC (2006) Chemical functionalization of boron–nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc 128:12001–12006

    Article  CAS  Google Scholar 

  37. Li SS (2006) Semiconductor physical electronics. Springer, New York

    Book  Google Scholar 

  38. Kittel C (2006) Introduction to solid state physics. Wiley, Singapore

    Google Scholar 

Download references

Acknowledgments

NG thanks University Grants Commission (UGC), New Delhi under Grant F. No. 41-342/22012(SR) for financial support. SS gratefully acknowledges financial Grant from Council of Scientific and Industrial Research (CSIR) via Grant no. 01(2499)/11/EMR-II. PS also thanks CSIR for the junior research fellowship. We are grateful to the reviewer for critical evaluation and important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, P., Singhal, S. & Goel, N. A new strategy to tune the BNNT band gap upon adsorption of nitrobenzene and its p-substituted derivatives. Struct Chem 26, 239–246 (2015). https://doi.org/10.1007/s11224-014-0470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0470-y

Keywords

Navigation