Skip to main content
Log in

Computational studies of the intermolecular interactions in dimers of the bowl-shaped sumanene molecule

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Sumanene, C21H12, the second smallest “buckybowl,” is a bowl-shaped fragment of buckminsterfullerene, C60. It can be described as a slice of buckminsterfullerene with 21 carbon atoms with all vacant valences terminated by hydrogens. A computational study of dimers of the sumanene molecule has been carried out. The concave–convex surface arrangement is the most favorable arrangement, and the binding energy and the equilibrium distance for the most stable conformation of the sumanene dimer are predicted to be 19.3 kcal/mol and 3.7 Å, respectively. The most stable geometry was the staggered stacked concave–convex motif, where one monomer was rotated by 60° from the eclipsed conformation. The binding energy of the eclipsed concave–convex dimer is predicted to be 16.7 kcal/mol with an equilibrium distance between the monomer units of 3.8 Å. At the MP2 level, the basis set superposition errors are quite large, 3–5 kcal/mol at the equilibrium distance depending on the basis set. The basis set superposition errors are smaller for dispersion-corrected density functional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ruiz C, Garcia-Frutos EM, Hennrich G, Gomez-Lor BJ (2012) Phys Chem Lett 3:1428

    Article  CAS  Google Scholar 

  2. Amaya T, Seki S, Moriuchi T, Nakamoto K, Nakata T, Sakane H, Saeki A, Tagawa S, Hirao T (2009) J Am Chem Soc 131:408

    Article  CAS  Google Scholar 

  3. Saenger W (1984) In: Principles of nucleic acid structure, Springer Verlag, New York

  4. Watson JD, Crick FHC (1953) Nature 171:737

    Article  CAS  Google Scholar 

  5. Burley SK, Petsko GA (1985) Science 229:23

    Article  CAS  Google Scholar 

  6. Blundell T, Singh J, Thornton J, Burley SK, Petsko GA (1986) Science 234:1005

    Article  CAS  Google Scholar 

  7. Burley SK, Petsko GA (1988) Adv Protein Chem 39:125

    Article  CAS  Google Scholar 

  8. Pirkle WH, Liu YJ (1996) Chromatogr A 749:19

    Article  CAS  Google Scholar 

  9. Smithrud DB, Diederich F (1990) J Am Chem Soc 112:339

    Article  CAS  Google Scholar 

  10. Ferguson SB, Sanford EM, Seward EM, Diederich F (1991) J Am Chem Soc 113:5410

    Article  CAS  Google Scholar 

  11. Hunter CA, Singh J, Thornton JM (1991) J Mol Biol 218:837

    Article  CAS  Google Scholar 

  12. Claessens CG, Stoddart JF (1997) J Phys Org Chem 10:254

    Article  CAS  Google Scholar 

  13. Dewar MJS, Lepley AR (1961) J Am Chem Soc 83:4560

    Article  CAS  Google Scholar 

  14. Fyfe MCT, Stoddart JF (1997) Acc Chem Res 30:93

    Article  Google Scholar 

  15. Hunter CA (1993) Angew Chem Int Ed 32:1584

    Article  Google Scholar 

  16. Sherrill CD (2009) Computations of noncovalent π interactions. In: Reviews in computational chemistry. John Wiley & Sons, Inc., New York, pp 1–38

  17. Kennedy MR, Burns LA, Sherrill CD (2012) J Phys Chem A 116:11920

    Article  CAS  Google Scholar 

  18. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) J Am Chem Soc 129:3842

    Article  CAS  Google Scholar 

  19. Mück-Lichtenfeld C, Grimme S, Kobryn L, Sygula A (2010) Phys Chem Chem Phys 12:7091

    Article  Google Scholar 

  20. Sygula A, Saebø S (2008) Int J Quantum Chem 109:65

    Article  Google Scholar 

  21. Janowski T, Pulay P, Karunarathna AAS, Sygula A, Saebø S (2011) Chem Phys Lett 512:155

    Article  CAS  Google Scholar 

  22. Tsuzuki S, Uchimaru T, Tanabe K (1998) J Phys Chem 102:740

    Article  CAS  Google Scholar 

  23. Peverati R, Baldridge KK (2008) Chem Theory Comput 4:2030

    Article  CAS  Google Scholar 

  24. Josa D, Rodriges-Otero J, Calbereiro-Lago E, Rellan-Pinero M (2013) Chem Phys Lett 557:170

    Article  CAS  Google Scholar 

  25. Vijay D, Sakurai H, Sastry GN (2011) Int J Quantum Chem 111:1893

    Article  CAS  Google Scholar 

  26. Cauet E, Jacquemin D (2012) Chem Phys Lett 519:49

    Article  Google Scholar 

  27. Denis PA (2011) Chem Phys Lett 516:82

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  29. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  30. Sinnokrot MO, Sherrill CD (2006) J Chem Phys 110:10656

    Article  CAS  Google Scholar 

  31. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6769

    Article  Google Scholar 

  32. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  33. Grimme S (2003) J Chem Phys 118:9095

    Article  CAS  Google Scholar 

  34. Sakurai T, Daiko T, Hirao T (2003) Science 187:1878–1882

    Article  Google Scholar 

  35. Sakurai T, Daiko T, Sakane H, Amaya T, Hirao T (2005) J Am Chem Soc 127:11580

    Article  CAS  Google Scholar 

  36. Tzuzuki S, Honda K, Uchimari T, Mikami M, Tamabe K (2002) J Am Chem Soc 125:104

    Article  Google Scholar 

  37. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887

    Article  CAS  Google Scholar 

  38. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  40. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  41. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560

    Article  CAS  Google Scholar 

  42. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  43. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  44. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comput Chem 30:317

    Article  CAS  Google Scholar 

  45. PQS (2013) Parallel Quantum Solutions, Fayetteville

  46. Haddon RC, Scott LT (1986) Pure Appl Chem 58:137

    CAS  Google Scholar 

  47. Haddon RC (1988) Acc Chem Res 21:243

    Article  CAS  Google Scholar 

  48. Sasith AA, Karunarathna N (2013) PhD dissertation, Mississippi State University

  49. Zhao Y, Truhlar DG (2006) J Phys Chem 110:5121

    Article  CAS  Google Scholar 

  50. Martinez CR, Iverson BL (2012) Chem Sci 3:2191

    Article  CAS  Google Scholar 

  51. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741

    Article  CAS  Google Scholar 

  52. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Theoretical Chemistry Institute, University of Wisconsin, Madison

  53. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NSF EPSCoR #0903787. The authors are also indebted to Dr. Andrzej Sygula at Mississippi State University for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saebo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunarathna, A.A.S., Saebo, S. Computational studies of the intermolecular interactions in dimers of the bowl-shaped sumanene molecule. Struct Chem 25, 1831–1836 (2014). https://doi.org/10.1007/s11224-014-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0463-x

Keywords

Navigation