Skip to main content
Log in

Impact of metal cation complexation and protonation on tautomeric and resonance forms of the oxaalkyl Schiff bases derived from 5-substituted salicylaldehyde and 2-hydroxy-1-naphthlaldehyde

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures of the main resonance and tautomeric forms of three Schiff bases of 2-hydroxy-1-naphthaldehyde (1OXA), 5-bromosalicylaldehyde (2OXA) and 5-nitrosalicylaldehyde (3OXA) with 1,8-diamine-3,6-dioxaoctane, before and after protonation and complexation of monovalent metal cations, have been studied by FTIR, 1H, 13C and 15N NMR methods. The spectroscopic investigations provided clear evidence that the Schiff bases exist in acetonitrile solution as three different tautomers: 1OXA in enamine-oxo, 2OXA in imine-hydroxy and 3OXA in a low-barrier O···H···N imine-oxo forms. It was found on the basis of multinuclear NMR studies, that in solid state, the enamine-oxo and imine-hydroxy tautomers are formed exclusively, but not the untypical imine-oxo tautomer, which requires strong stabilisation by solvent molecules in solution. MOG-PM6 calculations of the different tautomers allowed visualisation of their energetically the most favourable structures. Protonation of 1OXA–3OXA Schiff bases leads to formation of common forms, i.e. protonated imine-hydroxy structure, irrespectively of the structure of tautomer before protonation. In turn, coordination of monovalent metal cations implies common formation of zwitterionic forms within all studied ligands in solution. Application of FT-IR and NMR titrations in combination with ESI MS spectrometry revealed the nature and the structure of OXA complexes, whose formation is impeded by the intra- and intermolecular interactions. MOG-PM6 calculations allowed visualisation of Li+ and Na+ metal coordination sphere geometries within structure of all investigated complexes, stabilised by intermolecular interactions with solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hadjoudis E (1995) Photochromic and thermochromic anils. Mol Eng 5:301–337 and references cited therein

    Article  CAS  Google Scholar 

  2. Alarcón SH, Olivieri AC, Nordon A, Harris RK (1996) Solid-state electronic absorption, fluorescence and 13C CPMAS NMR spectroscopic study of thermo- and photo-chromic aromatic Schiff bases. J Chem Soc Perkin Trans 20(11):2293–2296

    Article  Google Scholar 

  3. Alarcón SH, Olivieri AC, Sanz D, Claramunt RM, Elguero J (2004) Substituent and solvent effects on the proton transfer equilibrium in anils and azo derivatives of naphthol. Multinuclear NMR study and theoretical calculations. J Mol Struct 705:1–9

    Article  Google Scholar 

  4. Hansen PE, Filarowski A (2004) Investigations of intramolecular hydrogen bond by nitrogen magnetic resonance methods. J Mol Struct 707:69–75

    Article  CAS  Google Scholar 

  5. Ibañez GA, Escandar GM, Olivieri AC (2002) Proton transfer and coordination properties of aromatic α-hydroxy hydrazones. J Mol Struct 605:17–26

    Article  Google Scholar 

  6. Hansen PE, Kamounah FS, Zhiryakova D, Manolova Y, Antonov L (2014) 1,1′,1′′-(2,4,6-Trihydroxybenzene-1,3,5-triyl)triethanone tautomerism revisited. Tetrahedron Lett 55:354–357

    Article  CAS  Google Scholar 

  7. Albayrak C, Kaştaş G, Odabaşoğlu M, Frank R (2013) The prototropic tautomerism and substituent effect through strong electron-withdrawing group in (E)-5-(diethylamino)-2-(3-nitrophenylimino)methyl] phenol. Spectrochim Acta A 114:205–213

    Article  CAS  Google Scholar 

  8. Houjou H, Shingai H, Yagi K, Yoshikawa I, Araki K (2013) Mutual interference between intramolecular proton transfer sites through the adjoining π-conjugated system in Schiff bases of double-headed, fused salicylaldehydes. J Org Chem 78:9021–9031

    Article  CAS  Google Scholar 

  9. Schilf W, Szady-Chelmieniecka A, Grech E, Przybylski P, Brzezinski B (2002) Spectroscopic studies of new Schiff and Schiff–Mannich bases of ortho-derivatives of 4-bromophenol. J Mol Struct 643:115–121

    Article  CAS  Google Scholar 

  10. Moghadam AJ, Omidyan R, Mirkhani V, Azimi G (2013) Theoretical investigation of excited state proton transfer process in the N-salicylidene-2-bromoethylamine. J Phys Chem A 117:718–725

    Article  Google Scholar 

  11. Ortiz-Sánchez JM, Gelabert R, Moreno M, Lluch JM (2006) Theoretical study on the excited-state intramolecular proton transfer in the aromatic Schiff base salicylidene methylamine: an electronic structure and quantum dynamical approach. J Phys Chem A 110:4649–4656

    Article  Google Scholar 

  12. Wojciechowski G, Przybylski P, Schilf W, Kamienski B, Brzezinski B (2003) Spectroscopic studies of Schiff bases of 2,2′-dihydroxybiphenyl-3-carbaldehyde and para substituted anilines. J Mol Struct 649:197–205

    Article  CAS  Google Scholar 

  13. Mandal A, Fitzmaurice D, Waghorne E, Koll A, Filarowski A, Quinn S, Mukherjee S (2004) Proton transfer reaction of a new orthohydroxy Schiff base at room temperature and 77 K. Spectrochim Acta A 60:805–813

    Article  CAS  Google Scholar 

  14. Golubev NS, Smirnov SN, Tolstoy PM, Sharif S, Toney MD, Denisov GS (2007) Observation by NMR of the tautomerism of an intramolecular OHOHN-charge relay chain in a model Schiff base. J Mol Struct 844–845:319–327

    Article  Google Scholar 

  15. Schilf W, Bloxsidge JP, Jones JR, Lu S-Y (2004) Investigations of intramolecular hydrogen bonding in three types of Schiff bases by 2H and 3H NMR isotope effects. Magn Reson Chem 42:556–560

    Article  CAS  Google Scholar 

  16. Schilf W (2004) Intramolecular hydrogen bonds in some 1,3bis(arylimino)isoindolines. J Mol Struct 689:245–249

    Article  CAS  Google Scholar 

  17. Enchev V, Ugrinov A, Neykov GD (2000) Intramolecular proton transfer reactions in internally hydrogen-bonded Schiff bases: ab initio and semiempirical study. J Mol Struct 530:223–235

    Article  CAS  Google Scholar 

  18. Sharif S, Powell DR, Schagen D, Steiner T, Toney MD, Fogle E, Limbach H-H (2006) X-ray crystallographic structures of enamine and amine Schiff bases of pyridoxal and its 1:1 hydrogen-bonded complexes with benzoic acid derivatives: evidence for coupled inter- and intramolecular proton transfer. Acta Crystallogr B 62:480–487

    Article  Google Scholar 

  19. Rozwadowski Z, Ambroziak K, Szypa M, Jagodzinska E, Spychaj S, Schilf W, Kamienski B (2005) The 15N and 13C NMR study of Schiff bases of amino acids and their lithium salts in solid state and DMSO solution. J Mol Struct 734:137–142

    Article  CAS  Google Scholar 

  20. Tezer N, Karakus N (2009) Theoretical study on the ground state intramolecular proton transfer (IPT) and solvation effect in two Schiff bases formed by 2-aminopyridine with 2-hydroxy-1-naphthaldehyde and 2-hydroxy salicylaldehyde. J Mol Model 15:223–232

    Article  CAS  Google Scholar 

  21. Rozwadowski Z, Schilf W, Kamienski B (2005) Solid-state NMR study of Schiff base derivatives of 2- hydroxynaphthaldehyde. Deuterium isotope on 15N chemical shifts in the solid state. Magn Reson Chem 43:573–577

    Article  CAS  Google Scholar 

  22. Ziółek M, Burdziński G, Karolczak J (2009) Influence of intermolecular hydrogen bonding on the photochromic cycle of the aromatic schiff base N,N′-bis(salicylidene)-p-phenylenediamine in solution. J Phys Chem A 113:2854–2864

    Google Scholar 

  23. Nedeltcheva D, Kamounah FS, Mirolo L, Fromm KM, Antonov L (2009) Solid state tautomerism in 2-((phenylimino)methyl)naphthalene-1-ol. Dyes Pigments 83:121–126

    Article  CAS  Google Scholar 

  24. Wang Q, Gao F, Li H, Zhang S (2010) Photoinduced excited state intramolecular proton transfer of new schiff base derivatives with extended conjugated chromophores: a comprehensive theoretical survey. Chin J Chem 28:901–910

    Article  CAS  Google Scholar 

  25. Albayrak C, Frank R (2010) Spectroscopic, molecular structure characterizations and quantum chemical computational studies of (E)-5-(diethylamino)-2-[(2-fluorophenylimino)methyl] phenol. J Mol Struct 984:214–220

    Article  CAS  Google Scholar 

  26. Demircioğlu Z, Albayrak Ç, Büyükgüngör O (2014) Experimental (X-ray, FT-IR and UV–Vis spectra) and theoretical methods (DFT study) of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta A 128:748–758

    Article  Google Scholar 

  27. Ali Beyramabadi S, Morsali A (2011) Intramolecular proton transfer of 2-[(2,4-dimethylphenyl)iminomethyl]-3,5-dimethoxyphenol schiff-base ligand: a density functional theory (DFT) study. Int J Phys Sci 6:1780–1788

    Google Scholar 

  28. Dhanunjayarao K, Mukundam V, Ramesh M, Venkatasubbaiah K (2014) Synthesis and optical properties of salicylaldimine-based diboron complexes. Eur J Inorg Chem 3:539–545

    Article  Google Scholar 

  29. Sharif S, Denisov GS, Toney MD, Limbach H-H (2006) NMR studies of solvent-assisted proton transfer in a biologically relevant Schiff base: toward a distinction of geometric and equilibrium H-bond isotope effects. J Am Chem Soc 128:3375–3387

    Article  CAS  Google Scholar 

  30. Pizzala H, Carles M, Stone WEE, Thevand A (2000) Tautomeric polymorphism in salicylideneamine derivatives: an X-ray diffraction and solid-state NMR study. J Chem Soc Perkin Trans 2:935–939

    Article  Google Scholar 

  31. Galic N, Cimerman Z, Tomisic V (1997) Tautomeric and protonation equilibria of Schiff bases of salicylaldehyde with aminopyridines. Anal Chim Acta 343:135–143

    Article  CAS  Google Scholar 

  32. Przybylski P, Schroeder G, Brzezinski B (2002) The Schiff base of gossypol with 2-(aminomethyl)-15-crown-5 complexes with monovalent cations studied by MS, 1H NMR, FT-IR and PM5 semiempirical methods. Phys Chem Chem Phys 4:6137–6143

    Article  CAS  Google Scholar 

  33. Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Srinivasan N (2011) A physiochemical study of azo dyes: DFT based ESIPT process. Spectrochim Acta A 83:200–206

    Article  CAS  Google Scholar 

  34. Przybylski P, Ratajczak-Sitarz M, Katrusiak A, Wojciechowski G, Schilf W, Brzezinski B (2003) Crystal structure of Schiff base derivative of gossypol with 3,6,9-trioxa-decylamine. J Mol Struct 655:293–300

    Article  CAS  Google Scholar 

  35. Houjou H, Motoyama T, Banno S, Yoshikawa I, Araki K (2009) Experimental and theoretical studies on constitutional isomers of 2,6-dihydroxynaphthalene carbaldehydes: effects of resonance-assisted hydrogen bonding on the electronic absorption spectra. J Org Chem 74:520–529

    Article  CAS  Google Scholar 

  36. Kakanejadifard A, Azarbani F, Zabardasti A, Rezayat A, Ghasemian M, Kakanejadifard S (2013) Spectroscopic and solvatochromism studies along with antioxidant and antibacterial activities investigation of 2-((2-mercaptophenyl-imino)methyl)-4-(phenyldiazenyl)phenol. Spectrochim Acta A 114:404–409

    Article  CAS  Google Scholar 

  37. Hayvali Z, Ünver H, Svoboda I (2010) Synthesis, spectroscopic, spectrophotometric and crystallographic investigations of 4-{[(1E)-(3,4-dimethoxyphenyl)methylene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one and 4-{[(1E)-(2-hydroxy-5-methoxyphenyl) methylene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one. Acta Chim Slov 57:643–650

    CAS  Google Scholar 

  38. Przybylski P, Schilf W, Kamieński B, Brzezinski B, Bartl F (2008) CP/MAS spectroscopy in the determination of the tautomeric forms of gossypol, its Schiff bases and hydrazones in the solid state. Magn Reson Chem 46:534–544

    Article  CAS  Google Scholar 

  39. Przybylski P, Bejcar G, Huczyński A, Schroeder G, Brzezinski B, Bartl F (2006) 1H- and 13C-NMR, FTIR, UV–VIS, ESI–MS, and PM5 studies as well as emission properties of a new Schiff base of gossypol with 5-methoxytryptamine and a new hydrazone of gossypol with dansylhydrazine. Biopolymers 82:521–535

    Article  CAS  Google Scholar 

  40. Xu H, Tao X, Li Y, Shen Y, Wei Y (2012) Synthesis, characterization and metal ion-sensing properties of two Schiff base derivatives. Spectrochim Acta A 91:375–382

    Article  CAS  Google Scholar 

  41. Tao T, Xu F, Chen X-C, Liu Q-Q, Huang W, You X-Z (2012) Comparisons between azo dyes and Schiff bases having the same benzothiazole/phenol skeleton: syntheses, crystal structures and spectroscopic properties. Dyes Pigments 92:916–922

    Article  CAS  Google Scholar 

  42. Chan-Huot M, Sharif S, Tolstoy PM, Toney MD, Limbach H-H (2010) NMR studies of the stability, protonation states, and tautomerism of 13C- and 15N-labeled aldimines of the coenzyme pyridoxal 5′-phosphate in water. Biochemistry 49:10818–10830

    Article  CAS  Google Scholar 

  43. Krygowski TM, Wozniak K, Anulewicz R, Pawlak D, Kołodziejski W, Grech E, Szady A (1997) Through-resonance assisted ionic hydrogen bonding in 5-nitro-N-salicylideneethylamine. J Phys Chem 101:9399–9404

    Article  CAS  Google Scholar 

  44. Zarycz N, Aucar GA (2008) Theoretical NMR spectroscopic analysis of the intramolecular proton transfer mechanism in ortho-hydroxyaryl (un-)substitued Schiff bases. J Phys Chem A 112:8767–8774

    Article  CAS  Google Scholar 

  45. Mukhopadhyay M, Banerjee D, Koll A, Filarowski A, Mukherjee S (2005) Proton transfer reaction of a new orthohydroxy Schiff base in some protic and aprotic solvents at room temperature and 77 K. Spectrochim Acta A 62:126–131

    Article  CAS  Google Scholar 

  46. Hansen PE (2007) Isotope effect on chemical shifts in hydrogen-bonded systems. J Label Compd Radiopharm 50:967–981

    Article  CAS  Google Scholar 

  47. Mohammadi A, Safarnejad M (2014) Synthesis, structural characterization and tautomeric properties of some novel bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone. Spectrochim Acta A 126:105–111

    Article  CAS  Google Scholar 

  48. Przybylski P, Pyta K, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B (2008) X-ray, FT-IR, ESI MS and PM5 studies of Schiff base of gossypol with allylamine and its complexes with alkali metal cations and perchlorate anion. Struct Chem 19:983–995

    Article  CAS  Google Scholar 

  49. Jakusová K, Donovalová J, Cigáň M, Gáplovský M, Garaj V, Gáplovský A (2014) Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions—anions induce tautomerism. Spectrochim Acta A 123:421–429

    Article  Google Scholar 

  50. Przybylski P, Pyta K, Stefańska J, Ratajczak-Sitarz M, Katrusiak A, Huczyński A, Brzezinski B (2009) Synthesis, crystal structures and antibacterial activity studies of aza-derivatives of phytoalexin from cotton plant-gossypol. Eur J Med Chem 44:4393–4403

    Article  CAS  Google Scholar 

  51. Przybylski P, Pyta K, Remlein-Starosta D, Schroeder G, Brzezinski B, Bartl F (2009) Antifungal activity of alkyl and heterocyclic aza-derivatives of gossypol as well as their complexes with NaClO4 against Fusarium oxysporum f. sp. lupini. Bioorg Med Chem Lett 19:1996–2000

    Article  CAS  Google Scholar 

  52. Pyta K, Przybylski P, Huczyński A, Hoser A, Woźniak K, Schilf W, Kamieński B, Grech E, Brzezinski B (2010) X-ray, spectroscopic and computational studies of the tautomeric structure of a new hydrazone of 5-nitrosalicylaldehyde with indole-3-acetic hydrazide. J Mol Struct 970:147–154

    Article  CAS  Google Scholar 

  53. Pyta K, Przybylski P, Schilf W, Kołodziej B, Szady-Chełmieniecka A, Grech E, Brzezinski B (2010) Spectroscopic and theoretical studies of the protonation of N-(5-nitrosalicylidene)-ethylamine. J Mol Struct 967:140–146

    Article  CAS  Google Scholar 

  54. Przybylski P, Schroeder G, Brzezinski B (2004) The Schiff base of gossypol with 2-(aminomethyl)-18-crown-6 complexes and H+, Li+, Na+, K+, Rb+, Cs+ cations studied by ESI MS, 1H NMR, FT-IR and PM5 semiempirical methods. J Mol Struct 699:65–77

    Article  CAS  Google Scholar 

  55. Przybylski P, Ilkevych N, Schroeder G, Brzezinski B, Bartl F (2004) Schiff base of gossypol with 3,6,9-trioxa-decylamine complexes, with monovalent cations studied by mass spectrometry, 1H-NMR, FTIR, and PM5 semiempirical methods. Biopolymers 73:470–483

    Article  CAS  Google Scholar 

  56. Scigress Explorer FJ 2.5 (EU 3.1.6), CAChe 7.7.0 (2008–2014) UserGuide of PM6 method. Beaverton, OR

  57. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

  58. Hoser AA, Schilf W, Szady-Chełmieniecka A, Kołodziej B, Kamieński B, Grech E, Woźniak K (2012) On the different coordination of NiII, ZnII and CdII cations in their model Schiff base complexes—single crystal X-ray and solid state NMR studies. Polyhedron 31:241–248

    Article  CAS  Google Scholar 

  59. Claramunt RM, Lopez C, Santa-Maria MD, Sanz D, Elguero J (2006) The use of NMR spectroscopy to study tautomerism. Prog Nucl Magn Reson Spectrosc 49:169–206

    Article  CAS  Google Scholar 

  60. Sashidhara KV, Rosaiah JN, Narender T (2007) Highly efficient and regioselective synthesis of keto-enamine Schiff bases of 7-hydroxy-4-methyl-2-oxo-2H-benzo[h]chromene-8,10-dicarbaldehyde and 1-hydroxynaphthalene-2,4-dicarbaldehyde. Tetrahedron Lett 48:1699–1702

    Article  CAS  Google Scholar 

  61. Montalvo-Gonzales R, Ariza-Castolo A (2003) Molecular structure of di-aryl-aldimines by multinuclear magnetic resonance and X-ray diffraction. J Mol Struct 665:375–389

    Article  Google Scholar 

  62. Przybylski P, Brzezinski B (2002) Spectroscopic studies and PM3 semiempirical calculations of Schiff bases of gossypol with l-amino acid methyl esters. Biopolymers 67:61–69

    Article  CAS  Google Scholar 

  63. Przybylski P, Bartl F, Brzezinski B (2002) Spectroscopic studies and PM5 semiempirical calculations of new Schiff bases of gossypol with polyoxaalkylamines. Biopolymers 65:111–120

    Article  CAS  Google Scholar 

  64. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PP, KP and KK wish to thank for the project financial support of the Polish National Science Center (NCN), Grant decision number DEC-2012/05/E/ST5/03792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Przybylski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyta, K., Przybylski, P., Klich, K. et al. Impact of metal cation complexation and protonation on tautomeric and resonance forms of the oxaalkyl Schiff bases derived from 5-substituted salicylaldehyde and 2-hydroxy-1-naphthlaldehyde. Struct Chem 25, 1733–1746 (2014). https://doi.org/10.1007/s11224-014-0447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0447-x

Keywords

Navigation