Skip to main content
Log in

DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Graphene is an important material in adsorption processes because of its high surface. In this work, the interactions between graphene (G), S-doped graphene (SG), and 2S-doped graphene (2SG) with eight small molecules including molecular halogens, CH3OH, CH3SH, H2O, and H2S were studied using density functional theory calculations. The adsorption energies showed that the SG was the best adsorbent, fluorine was the best adsorbate, and all molecular halogens were adsorbed on graphenes better than the other molecules. Most adsorption processes in the gas phase were exothermic with small positive ΔG ads. Moreover, the solvent effect on the adsorption process was examined and all ΔH ads and ΔG ads values for adsorption processes tended to be more negative in all solvents. Therefore, most adsorption processes in the solvents were thermodynamically favorable. The second order perturbation energies obtained from NBO calculations confirmed that the interactions between molecular halogens and our molecules had more strength than those of other molecules. The Laplacian of ρ values obtained from the AIM calculations indicated that the type of interaction in all our complexes was one of closed shell interaction. The MO results and DOS plots also revealed that sulfur doping could increase the conductivity of graphene and this conductivity was enhanced more when they interacted with molecular halogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xie L, Wang Z, Mao H, Wang R, Ding M, Wang Y, zyilmaz B, Loh KP, Wee A, Chen W (2011) Appl Phys Lett 99:12112–12113

    Article  Google Scholar 

  2. Karlický F, Zbořil R, Otyepka M (2012) J Chem Phys 137:34709–34712

    Article  Google Scholar 

  3. Rani P, Jindal VK (2013) RSC Adv 3:802–812

    Article  CAS  Google Scholar 

  4. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Lopes-dosSantos JMB, Nilsson J, Guinea FA, Geim K, Castro-Neto AH (2007) Phys Rev Lett 99:216802–216805

    Article  Google Scholar 

  5. Yang X, Wang Y, Huang XV, Mac Huang Y, Yang R, Duan H, Chen Y (2011) J Mater Chem 21:3448–3454

    Article  CAS  Google Scholar 

  6. Kidambi PR, Ducati C, Dlubak B, Gardiner D, Weatherup RS, Martin M, Seneor P, Coles H, Hofmann S (2012) J Phys Chem C 116:22492–22501

    Article  CAS  Google Scholar 

  7. Lia W, Magnusona C, Venugopalb A, Ana J, Won Suka J, Hana B, Borysiakc M, Caia W, Velamakannia A, Zhua Y, Fud LM, Vogelb E, Voelkld E, Colomboe LS, Ruoffa R (2010) Nano Lett 10:4328–4334

    Article  Google Scholar 

  8. Li P, You Z, Haugstad G, Cui T (2011) Appl Phys Lett 98:1–253105

    Article  Google Scholar 

  9. Kyle A, Ritter KA, Lyding JW (2008) Nanotechnology 19:15704–15710

    Article  Google Scholar 

  10. Jiao LY, Zhang L, Wang XR, Diankov G, Dai HJ (2009) Narrow Nat 458:877–880

    Article  CAS  Google Scholar 

  11. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458:872–876

    Article  CAS  Google Scholar 

  12. Shi G, Ding Y, Fang HJ (2012) Comput Chem 33:1328–1337

    Article  CAS  Google Scholar 

  13. Hernández JM, Anota EC, Romero MT, Melchor MG, Cocoletzi GH (2012) J Mol Model 18:3857–3866

    Article  Google Scholar 

  14. Wood BC, Bhide SY, Dutta D, Kandagal VS, Pathak AD, Punnathanam SN, Ayappa KG, Narasimhan S (2012) J Chem Phys 137:54702–54708

    Article  Google Scholar 

  15. Anota EC, Juárez AR, Castro M, Cocoletzi HA (2013) J Mol Model 19:321–328

    Article  CAS  Google Scholar 

  16. Kishi H, Tani M, Sakaue M, Nakanishi H, Kasai H (2012) J Vac Soc Jap 55:198–203

    Article  CAS  Google Scholar 

  17. Ayala IG, Cordero NA (2012) J Nanopart Res 14:1071

    Article  Google Scholar 

  18. Rudenko AN, Keil FJ, Katsnelson MI, Lichtenstein AI (2012) Phys Rev B 86:075422

    Article  Google Scholar 

  19. Ambrosetti A, Silvestrelli PL (2011) J Phys Chem C 115:3695–3702

    Article  CAS  Google Scholar 

  20. Mirzaei M, Yousefi M (2012) Superlattice Microstruct 52:612–617

    Article  CAS  Google Scholar 

  21. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) ACS Nano 4:1790–1798

  22. Rastegar SF, Peyghan AA, Hadipour NL (2013) Appl Surf Sci 256:412–417

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick; DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 Revision A1 Gaussian Inc Wallingford CT

  24. Becke AD (1993) J Chem Phys 98:5648–5654

    Article  CAS  Google Scholar 

  25. Lee TC, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

  27. Mietrus S, Scrocco E (1981) J Chem Phys 55:117–122

    Google Scholar 

  28. Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO Version 31

  29. Bader RFW (1990) Atoms in molecules a quantum theory. Oxford University Press, New York

    Google Scholar 

  30. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845

    Article  Google Scholar 

  31. Tavakol H, Sabzyan H (2011) J Phys Org Chem 24:414–422

    Article  CAS  Google Scholar 

  32. Tavakol H (2011) Mol Simul 37:1113–1121

    Article  CAS  Google Scholar 

  33. Tavakol H (2011) Int J Quantum Chem 111:3717–3724

    CAS  Google Scholar 

  34. Tavakol H (2010) J Mol Struct 954:16–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, H., Mollaei-Renani, A. DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S. Struct Chem 25, 1659–1667 (2014). https://doi.org/10.1007/s11224-014-0446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0446-y

Keywords

Navigation