Skip to main content
Log in

Drug-dendrimer supramolecular complexation studied from molecular dynamics simulations and NMR spectroscopy

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Fully atomistic molecular dynamics (MD) simulations and NMR spectroscopy were employed to get insights about the molecular details of drug-dendrimer supramolecular association phenomena, using piroxicam (PRX) and the third generation poly(amido amine) (PAMAM-G3) dendrimer as model systems. Theoretical results concerning the complex stoichiometry suggest that PRX forms drug-dendrimer complexes of the type 24:1 at pH 7.0. This result was validated with the experimental quantities obtained from aqueous solubility profiles, which led to an empiric stoichiometry of 23:1 for the PRX:PAMAM-G3 system. The predicted binding mode between PRX and PAMAM-G3 accounts for the preferred encapsulation of the drug inside dendrimer cavities, which is mainly driven by van der Waals and hydrogen bonding interactions, and to a lesser extent, for the external association of the guest through electrostatic contacts with the positively charged amino groups of PAMAM periphery. The binding mode obtained from MD simulations was confirmed with 2D-NOESY experiments, which evidence the preferred internal complexation of PRX with PAMAM-G3. The predominance of internal encapsulation over external contacts in the PRX:PAMAM-G3 system differs from the general behaviour expected for acidic anionic guests, for which external electrostatic interactions with the positively charged PAMAM surface have been postulated as the most relevant factor for drug association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99(7):1665. doi:10.1021/cr970069y

    Article  CAS  Google Scholar 

  2. Zeng FW, Zimmerman SC (1997) Chem Rev 97(5):1681. doi:10.1021/cr9603892

    Article  CAS  Google Scholar 

  3. Boas U, Heegaard PMH (2004) Chem Soc Rev 33(1):43. doi:10.1039/b309043b

    Article  CAS  Google Scholar 

  4. Tomalia DA, Frechet JM (2005) Prog Polym Sci 30(3–4):217. doi:10.1016/j.progpolymsci.2005.03.003

    Article  CAS  Google Scholar 

  5. Esfand R, Tomalia DA (2001) Drug Discov Today 6(8):427. doi:10.1016/s1359-6446(01)01757-3

    Article  CAS  Google Scholar 

  6. Porcar L, Liu Y, Verduzco R, Hong KL, Butler PD, Magid LJ, Smith GS, Chen WR (2008) J Phys Chem B 112(47):14772. doi:10.1021/jp805297a

    Article  CAS  Google Scholar 

  7. Maiti PK, Çağın T, Lin S-T, Goddard WA (2005) Macromolecules 38(3):979. doi:10.1021/ma049168l

    Article  CAS  Google Scholar 

  8. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) J Control Release 65(1–2):133. doi:10.1016/s0168-3659(99)00246-1

    Article  CAS  Google Scholar 

  9. Duncan R, Izzo L (2005) Adv Drug Deliv Rev 57(15):2215. doi:10.1016/j.addr.2005.09.019

    Article  CAS  Google Scholar 

  10. D’Emanuele A, Attwood D (2005) Adv Drug Deliv Rev 57(15):2147. doi:10.1016/j.addr.2005.09.012

    Article  Google Scholar 

  11. Cheng Y, Wu Q, Li Y, Xu T (2008) J Phys Chem B 112(30):8884. doi:10.1021/jp801742t

    Article  CAS  Google Scholar 

  12. Lyulin SV, Darinskii AA, Lyulin AV, Michels MAJ (2004) Macromolecules 37(12):4676. doi:10.1021/ma0357927

    Article  CAS  Google Scholar 

  13. Wu B, Chen WR, Egami T, Li X, Liu Y, Wang YM, Do C, Porcar L, Hong KL, Liu L, Smith GS, Smith SC (2012) J Chem Phys 137(6):064902. doi:10.1063/1.4742190

    Article  Google Scholar 

  14. Maiti PK, Bagchi B (2009) J Chem Phys 131(21):214901. doi:10.1063/1.3266512

    Article  Google Scholar 

  15. Wu B, Kerkeni B, Egami T, Do C, Liu Y, Wang YM, Porcar L, Hong KL, Smith SC, Liu EL, Smith GS, Chen WR (2012) J Chem Phys 136(14):144901. doi:10.1063/1.3697479

    Article  Google Scholar 

  16. Barraza LF, Alderete JB, Jimenez VA, Gavin JA (2012) Monatsh Chem 143(1):29. doi:10.1007/s00706-011-0555-x

    Article  CAS  Google Scholar 

  17. Lee I, Athey BD, Wetzel AW, Meixner W, Baker JR (2002) Macromolecules 35(11):4510. doi:10.1021/ma010354q

    Article  CAS  Google Scholar 

  18. Maiti PK, Cagin T, Wang GF, Goddard WA (2004) Macromolecules 37(16):6236. doi:10.1021/ma035629b

    Article  CAS  Google Scholar 

  19. Tanis I, Karatasos K (2009) J Phys Chem B 113(31):10984. doi:10.1021/jp9039176

    Article  CAS  Google Scholar 

  20. Caballero J, Poblete H, Navarro C, Alzate-Morales JH (2013) J Mol Graph Model 39:71. doi:10.1016/j.jmgm.2012.11.003

    Article  CAS  Google Scholar 

  21. Maingi V, Kumar MVS, Maiti PK (2012) J Phys Chem B 116(14):4370. doi:10.1021/jp211515g

    Article  CAS  Google Scholar 

  22. Torri G, Vignati C, Agrifoglio E, Benvenuti M, Ceciliani L, Raschella BF, Letizia G, Martorana U, Tessari L, Thovez G, Siclari A (1994) Curr Ther Res Clin E 55(5):576. doi:10.1016/s0011-393x(05)80189-4

    Article  Google Scholar 

  23. Blackburn WD, Prupas HM, Silverfield JC, Poiley JE, Caldwell JR, Collins RL, Miller MJ, Sikes DH, Kaplan H, Fleischmann R, Scoville CD, Rutstein JE, Hurd ER, Louie JS, Bankhurst AD, Weaver AL, Sebba AI, Appelrouth DJ, Hudson NP, Gordon GV, Gordon RD, Ludivico CL, Austin MC, Sanders KM, Schuette PT, Moidel RA, Kraska AR, Ting NT, Shanahan WR, Loose LD (1995) Arthritis Rheum 38(10):1447. doi:10.1002/art.1780381011

    Article  CAS  Google Scholar 

  24. Richy F, Scarpignato C, Lanas A, Reginster JY (2009) Pharmacol Res 60(4):254. doi:10.1016/j.phrs.2009.03.021

    Article  CAS  Google Scholar 

  25. Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK (2009) Mol Pharm 6(3):940. doi:10.1021/mp8002489

    Article  CAS  Google Scholar 

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26(16):1781. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  27. Foloppe N, MacKerell AD (2000) J Comput Chem 21(2):86. doi:10.1002/(sici)1096-987x(20000130)21:2<86:aid-jcc2>3.0.co;2-g

    Article  CAS  Google Scholar 

  28. Gaussian 03 Revision C02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Wallingford

  29. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) J Comput Chem 32(11):2359. doi:10.1002/jcc.21816

    Article  CAS  Google Scholar 

  30. Cakara D, Kleimann J, Borkovec M (2003) Macromolecules 36(11):4201. doi:10.1021/ma0300241

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  32. Neria E, Fischer S, Karplus M (1996) J Chem Phys 105(5):1902

    Article  CAS  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577. doi:10.1063/1.470117

    Article  CAS  Google Scholar 

  34. Higuchi T, Connors KA (1965) Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation. John Wiley, New York

    Google Scholar 

  35. Liu Y, Porcar L, Hong KL, Shew CY, Li X, Liu E, Butler PD, Herwig KW, Smith GS, Chen WR (2010) J Chem Phys 132(12):124901. doi:10.1063/1.3358349

    Article  Google Scholar 

  36. Chen WR, Porcar L, Liu Y, Butler PD, Magid LJ (2007) Macromolecules 40(16):5887. doi:10.1021/ma0626564

    Article  CAS  Google Scholar 

  37. Kłos JS, Sommer JU (2010) Macromolecules 43(24):10659. doi:10.1021/ma102055w

    Article  Google Scholar 

  38. Blaak R, Lehmann S, Likos CN (2008) Macromolecules 41(12):4452. doi:10.1021/ma800283z

    Article  CAS  Google Scholar 

  39. Johnson CS (1999) Prog Nucl Magn Reson Spectrosc 34(3–4):203

    Article  CAS  Google Scholar 

  40. Wu DH, Chen AD, Johnson CS (1995) J Magn Reson Ser A 115(2):260. doi:10.1006/jmra.1995.1176

    Article  CAS  Google Scholar 

  41. Longsworth LG (1960) J Phys Chem 64(12):1914. doi:10.1021/j100841a027

    Article  CAS  Google Scholar 

  42. Zhao LB, Cheng YY, Hu JJ, Wu QL, Xu TW (2009) J Phys Chem B 113(43):14172. doi:10.1021/jp907437e

    Article  CAS  Google Scholar 

  43. Hu JJ, Cheng YY, Ma YR, Wu QL, Xu TW (2009) J Phys Chem B 113(1):64. doi:10.1021/jp8078919

    Article  CAS  Google Scholar 

  44. Fielding L (2000) Tetrahedron 56(34):6151. doi:10.1016/s0040-4020(00)00492-0

    Article  CAS  Google Scholar 

  45. Cameron KS, Fielding L (2001) J Org Chem 66(21):6891. doi:10.1021/jo010081x

    Article  CAS  Google Scholar 

  46. Hu JJ, Cheng YY, Wu QL, Zhao LB, Xu TW (2009) J Phys Chem B 113(31):10650. doi:10.1021/jp9047055

    Article  CAS  Google Scholar 

  47. Chai MH, Holley AK, Kruskamp M (2007) Chem Commun 2:168. doi:10.1039/b610018j

    Article  Google Scholar 

  48. Rozou S, Voulgari A, Antoniadou-Vyza E (2004) Eur J Pharm Sci 21(5):661. doi:10.1016/j.ejps.2004.01.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank FONDECYT Grant 1130531 and Programa de Intercambio Académico, Universidad de La Laguna. We also thank to the Servicio de Resonancia Magnética Nuclear, Universidad de La Laguna, for allocating instrument time to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel B. Alderete.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra, P.A., Barraza, L.F., Jiménez, V.A. et al. Drug-dendrimer supramolecular complexation studied from molecular dynamics simulations and NMR spectroscopy. Struct Chem 25, 1443–1455 (2014). https://doi.org/10.1007/s11224-014-0424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0424-4

Keywords

Navigation