Skip to main content
Log in

Exploring the correlation between the π-electron delocalization and intramolecular hydrogen bond in malonaldehyde derivatives; a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The resonance-assisted hydrogen bond (RAHB) theory claims that the intramolecular hydrogen bond and π-electron delocalization (π-ED) are interrelated. In the present study, for the first time, the relation between the π-ED and intramolecular hydrogen bond strength were examined. Along this line, the π-ED of the cis enol forms of malonaldehyde and its halogenated derivatives using the various indicators, such as geometrical factor of Gilli (λ), the harmonic oscillator model of aromaticity (HOMA), the nucleus-independent chemical shift (NICS), the para delocalization index (PDI), the average two center index (ATI), the aromatic fluctuation index (FLU), and the π-fluctuation aromatic index (FLUπ) were evaluated. For checking the relation between the π-ED and hydrogen bond strength, we explored and compared all of the correlations between these indices with various descriptors of hydrogen bond, such as geometrical, spectroscopic, topological, and molecular orbital parameters. Our theoretical results show that the geometrical-based indices (λ and HOMA) have the best linear correlations with all of hydrogen bond descriptors (R ≈ 0.90), while the results of other indices (ATI, PDI, FLU, FLUπ, NICS(0), and NICS(1)) are not appropriate (R ≤ 0.80). Surprisingly, we found that the NICS(0) has the weakest linear dependence with all of the HB descriptors. Consequently, the linear dependence of π-ED indices and HB descriptors are in line with the RAHB theory. Finally, according to the absolute correlation coefficients, the approximate order of linearity is as follows: \(\lambda > {\text{HOMA}} > {\text{FLU}} > {\text{ATI}} \approx {\text{FLU}}\pi > {\text{NICS}}\left( 1\right) > {\text{PDI}} > {\text{NICS}}\left( 0 \right) .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1

Similar content being viewed by others

References

  1. Emsley J (1984) Struct Bonding 57:147

    Article  CAS  Google Scholar 

  2. Woodford JN (2007) J Phys Chem A 111:8519

    Article  CAS  Google Scholar 

  3. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93

    Article  CAS  Google Scholar 

  4. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quantum Chem 111:578

    Article  CAS  Google Scholar 

  5. Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006) J Mol Struct 787:148

    Article  CAS  Google Scholar 

  6. Nowroozi A, Mohamadzadeh P, Asli N, Hajiabadi H, Raissi H (2012) Int J Quantum Chem 112:489

    Article  CAS  Google Scholar 

  7. Nowroozi A, Raissi H, Hajiabadi H, Mohamadzadeh P (2011) Int J Quantum Chem 111:3040

    Article  CAS  Google Scholar 

  8. Pakiari AH, Eskandari K (2006) J Mol Struct (THEOCHEM) 759:51

    Article  CAS  Google Scholar 

  9. Hargis JC, Evangelista FA, Ingels JB, Schaefer HF (2008) J Am Chem Soc 130:17471

    Article  CAS  Google Scholar 

  10. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, Oxford

    Book  Google Scholar 

  11. Schuster P, Zundel G (1976) The hydrogen bond. Recent development in theory and experiment. North-Holland, Amsterdam

    Google Scholar 

  12. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  13. Buemi G, Zuccarello F (2004) Chem Phys 306:115

    Article  CAS  Google Scholar 

  14. Rozas I, Alkorta I, Elguero J (2001) J Phys Chem 105A:10462

    Article  Google Scholar 

  15. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem 110A:10890

    Article  Google Scholar 

  16. Cyranski MK (2005) Chem Rev 105:3773

    Article  CAS  Google Scholar 

  17. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023

    Article  CAS  Google Scholar 

  18. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713

    Article  CAS  Google Scholar 

  19. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  20. Poater J, Feradera X, Duran M, Sola M (2003) Chem Eur J 9:400

    Article  CAS  Google Scholar 

  21. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706

    Article  CAS  Google Scholar 

  22. Matito E, Duran M, Sola M (2005) J Chem Phys 122:14109

    Article  Google Scholar 

  23. Matito E, Salvador P, Sola M (2006) J Phys Chem A 110:5108

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian. Pittsburgh

  25. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000: a program to analyze and visualize atoms in molecules. J Comp Chem 22:545

    Article  Google Scholar 

  26. Glendening DE, Reed AE, Carpenter JE, Weinhold F NBO, Version 3.1

  27. Hameka HF (1958) Mol Phys 1:203

    Article  CAS  Google Scholar 

  28. Krygowski TM, Stepion BT (2005) Chem Rev 105:3482

    Article  CAS  Google Scholar 

  29. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385

    Article  CAS  Google Scholar 

  30. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911

    Article  CAS  Google Scholar 

  31. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513

    Article  CAS  Google Scholar 

  32. Grabowski SJ (2001) J Mol Struct 562:137

    Article  CAS  Google Scholar 

  33. Grabowski SJ (1999) Chem Phys Lett 312:542

    Article  CAS  Google Scholar 

  34. Grabowski SJ (2003) J Phys Org Chem 16:797

    Article  CAS  Google Scholar 

  35. Feixas F, Matito E, Poater J, Sola M (2008) J Comput Chem 29:1543

    Article  CAS  Google Scholar 

  36. Koch U, Popelier P (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  37. Reed AE, Curtis LA, Weinhold FA (1998) Chem Rev 88:899

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully thank University of Sistan and Baluchestan (USB) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowroozi, A., Nakhaei, E. & Masumian, E. Exploring the correlation between the π-electron delocalization and intramolecular hydrogen bond in malonaldehyde derivatives; a quantum chemical study. Struct Chem 25, 1415–1422 (2014). https://doi.org/10.1007/s11224-014-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0421-7

Keywords

Navigation