Skip to main content
Log in

Transmission of electronic substituent effects through cage polycyclic alkanes: a computational study of diamantane derivatives based on structural variation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The transmission of long-range polar effects (field effects) across the diamantane cage has been investigated by analyzing the small structural changes induced by a variable substituent X in the phenyl group of 9-substituted 4-phenyldiamantane derivatives. The structures of many such molecules with charged or dipolar substituents have been determined from quantum chemical calculations at the HF/6-31G* and B3LYP/6-311++G** levels of theory. Comparison with the results of a similar study carried out on 4-substituted 1-phenylbicyclo[2.2.2]octane derivatives, where the distance between probe and substituent is substantially smaller, shows that the ability of the diamantane framework to transmit field effects is 45 % of that of the bicyclo[2.2.2]octane framework when X is a dipolar, uncharged substituent. This figure increases to 59 % in the case of charged groups. The structural results support the idea that the field effect of a dipolar substituent attenuates more rapidly with distance than that of a charged group. This makes it impossible to construct a single, universal scale of field parameters including both dipolar and charged groups. A single scale can only be set up for a fixed separation between substituent and probe. The presence of the variable substituent X has a pronounced effect on the geometry of the diamantane cage. The nonbonded distance between the bridgehead carbons C4 and C9 spans an interval about 0.20 Å wide and correlates quite well with the mean value of the three cage angles at C9. These geometric changes are closely similar to those of the corresponding parameters in 4-substituted 1-phenylbicyclo[2.2.2]octane derivatives. The concerted structural variation of the polycyclic cage is controlled primarily by the group electronegativity of X and does not correlate with the much smaller structural variation of the phenyl probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stock LM (1972) J Chem Educ 49:400–404

    Article  CAS  Google Scholar 

  2. Exner O, Fiedler P (1980) Collect Czechoslov Chem Commun 45:1251–1268

    Article  CAS  Google Scholar 

  3. Bowden K, Grubs EJ (1993) Prog Phys Org Chem 19:183–224

    Article  CAS  Google Scholar 

  4. Exner O, Friedl Z (1993) Prog Phys Org Chem 19:259–294

    Article  CAS  Google Scholar 

  5. Koppel IA, Mishima M, Stock LM, Taft RW, Topsom RD (1993) J Phys Org Chem 6:685–689

    Article  CAS  Google Scholar 

  6. Bowden K, Grubs EJ (1996) Chem Soc Rev 25:171–177

    Article  CAS  Google Scholar 

  7. Adcock W, Trout NA (1999) Chem Rev 99:1415–1435

    Article  CAS  Google Scholar 

  8. Exner O, Böhm S (2002) Chem Eur J 8:5147–5152

    Article  CAS  Google Scholar 

  9. Wiberg KB (2002) J Org Chem 67:1613–1617

    Article  CAS  Google Scholar 

  10. Adcock W, Baran Y, Filippi A, Speranza M, Trout NA (2005) J Org Chem 70:1029–1034

    Article  CAS  Google Scholar 

  11. Adcock W (2009) J Phys Org Chem 22:1065–1069

    Article  CAS  Google Scholar 

  12. Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129

    Article  CAS  Google Scholar 

  13. Campanelli AR, Domenicano A, Piacente G, Ramondo F (2010) J Phys Chem A 114:5162–5170

    Article  CAS  Google Scholar 

  14. Campanelli AR, Domenicano A, Ramondo F (2011) Struct Chem 22:449–457

    Article  CAS  Google Scholar 

  15. Gund TM, Osawa E, Williams VZ Jr, Schleyer PvR (1974) J Org Chem 39:2979–2987 (and references quoted therein)

    Google Scholar 

  16. Cupas C, Schleyer PvR, Trecker DJ (1965) J Am Chem Soc 87:917–918

    Article  CAS  Google Scholar 

  17. Karle IL, Karle J (1965) J Am Chem Soc 87:918–920

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford

    Google Scholar 

  20. Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440

    Article  CAS  Google Scholar 

  21. Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948

    Article  CAS  Google Scholar 

  22. Campanelli AR, Domenicano A, Macchiagodena M, Ramondo F (2011) Struct Chem 22:1131–1141

    Article  CAS  Google Scholar 

  23. Campanelli AR, Domenicano A, Ramondo F (2012) J Phys Chem A 116:8209–8217

    Article  CAS  Google Scholar 

  24. Campanelli AR, Domenicano A (2013) Struct Chem 24:867–876

    Article  CAS  Google Scholar 

  25. Campanelli AR (2013) Struct Chem 24:859–866

    Article  CAS  Google Scholar 

  26. Laidler KJ, Meiser JH, Sanctuary BC (2003) Physical chemistry, 4th edn. Houghton Mifflin Company, Boston, p 911

    Google Scholar 

  27. Exner O (1978) A critical compilation of substituent constants. In: Chapman NB, Shorter J (eds) Correlation analysis in chemistry: recent advances. Plenum Press, New York, pp 439–540

    Chapter  Google Scholar 

  28. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  29. Cherkasov AR, Galkin VI, Cherkasov RA (1996) Russ Chem Rev 65:641–656

    Article  Google Scholar 

  30. Walsh AD (1947) Discuss Faraday Soc 2:18–25

    Article  Google Scholar 

  31. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  32. Bent HA (1961) J Inorg Nucl Chem 19:43–50

    Article  CAS  Google Scholar 

  33. Gillespie RJ (1972) Molecular geometry. Van Nostrand Reinhold, London

    Google Scholar 

  34. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn and Bacon, Boston (2012, Dover, Mineola)

  35. Domenicano A, Vaciago A, Coulson CA (1975) Acta Crystallogr B31:221–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CASPUR Supercomputing Center, Rome, with a Standard HPC Grant 2012 (“A combined X-ray absorption spectroscopy, molecular dynamics simulations, and quantum mechanics calculation procedure for the structural characterization of ill-defined systems”) and by the CINECA Supercomputing Center, Bologna, with Project IsC10_DYNGEO_E.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Rita Campanelli or Aldo Domenicano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanelli, A.R., Domenicano, A. Transmission of electronic substituent effects through cage polycyclic alkanes: a computational study of diamantane derivatives based on structural variation. Struct Chem 25, 691–698 (2014). https://doi.org/10.1007/s11224-014-0400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0400-z

Keywords

Navigation