Skip to main content
Log in

Density functional theory study of Te(CN)2, Te(CN)(NC), and Te(NC)2 and their isomerizations

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The equilibrium structures of Te(CN)2, Te(CN)(NC), and Te(NC)2 and three isomerization reactions: Te(CN)2 ⇌ Te(CN)(NC), Te(CN)(NC) ⇌ Te(NC)2, and Te(CN)2 ⇌ Te(NC)2 were studied in the gas-phase using density functional theory. Three functionals (B3LYP, BLYP, and BHLYP) were employed to characterize the low-lying electronic singlet and triplet TeC2N2 isomers. The basis sets for carbon and nitrogen used were of double-ζ plus polarization quality with additional s- and p-type diffuse functions, DZP++. For the tellurium atom, the LANL2DZ (ECP) basis set was used. The energetic ordering (kcal mol−1) (B3LYP) including zero-point vibrational energy corrections for the singlet ground state isomers follows: Te(CN)2 (0.0, global minimum) < Te(CN)(NC) (15.4) < Te(NC)2 (29.8). Electrostatic potentials and average local ionization energies of the ground state Te(CN)2, Te(CN)(NC), and Te(NC)2 isomers provide some guidance as to sites for noncovalent and covalent interactions. Energetics such as the different forms of electron affinities, ionization energies, and singlet–triplet gaps were also reported. Further the theoretical rate constants for the isomerization reactions were evaluated using transition state theory. We predict that these isomers may crystallize in similar patterns, if stable, as does Se(CN)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pierce L, Nelson R, Thomas C (1965) J Chem Phys 43:3423

    Article  CAS  Google Scholar 

  2. Long DA, Steele D (1963) Spectrochim Acta 19:1731

    Article  Google Scholar 

  3. Goehring M (1943) Ber deut them Ges 76B:742

    Article  CAS  Google Scholar 

  4. Feher F, Muenzer H (1963) Chem Ber 96:1131

    Article  CAS  Google Scholar 

  5. Long DA, Steele D (1963) Spectrochim Acta 19:1732

    Google Scholar 

  6. Brunvoll J (1967) Acta Chem Scand 21:820

    Article  CAS  Google Scholar 

  7. Narayan G, Durig JR, Perurnal A (1960) Monatsh Chem 100:179

    Google Scholar 

  8. Arnold W, Dreizler H, Rudolph HD (1964) Z Naturforsch 19a:1428

    CAS  Google Scholar 

  9. Arnold W, Rogowski F (1965) Z Naturforsch 20b:806

    CAS  Google Scholar 

  10. Linke KH, Lemmer F (1966) Z Anorg Allg Chem 345:203

    Article  CAS  Google Scholar 

  11. Emerson K (1966) Acta Crystallogr 21:970

    Article  CAS  Google Scholar 

  12. Hazell AC (1963) Acta Crystallogr 16:843

    Article  CAS  Google Scholar 

  13. Fehér F, Hirschfeld D, Linke KM (1963) Acta Crystallogr 16:154

    Article  Google Scholar 

  14. Linke KH, Lemmer F (1966) Z Anorg Allg Chem 345:211

    Article  CAS  Google Scholar 

  15. Rosenberg H, Olsen JF, Howell JM (1978) J Mol Struct 48:249

    Article  CAS  Google Scholar 

  16. Rosmus P, Stafast H, Bock H (1981) Chem Phys Lett 34:275

    Article  Google Scholar 

  17. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Google Scholar 

  19. King MA, Kroto HW (1984) J Am Chem Soc 106:7347

    Article  CAS  Google Scholar 

  20. Klapötke TM, Krumm B, Scherr M (2008) Inorg Chem 47:7025

    Article  Google Scholar 

  21. Knight FR, Fuller AL, Bühl M, Slawin AMZ, Woollins JD (2010) Inorg Chem 49:7577

    Article  CAS  Google Scholar 

  22. Al-Salim NI, McWhinnie WR (1989) Polyhedron 8:2769

    Article  CAS  Google Scholar 

  23. Kemmitt T, Levason W, Spicer MD, Webster M (1990) Organometallics 9:1181

    Article  CAS  Google Scholar 

  24. Menon SC, Singh HB, Patel RP, Kulshreshtha SK (1996) J Chem Soc, Dalton Trans 1203

  25. Han L-B, Choi N, Tanaka M (1997) J Am Chem Soc 119:1795

    Article  CAS  Google Scholar 

  26. Menon SC, Panda A, Singh HB, Butcher RJ (2000) Chem Commun 143

  27. Panda S, Singh HB, Butcher RJ (2004) Chem Commun 322

  28. Tripathi SK, Patel U, Roy D, Sunoj RB, Singh HB, Wolmershäuser G, Butcher RJ (2005) J Org Chem 70:9237

    Article  CAS  Google Scholar 

  29. Wagner A, Vigo L, Oilunkaniemi R, Latinen RS, Weigand W (2008) Dalton Trans 3535

  30. Jing S, Morley CP, Webster CA, Di Vaira MJ (2008) Organomet Chem 693:2310

    Article  CAS  Google Scholar 

  31. Beckmann J, Bolsinger J, Duthie A, Finke P (2012) Organometallics 31:238

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, CT

  33. Becke AD (1988) J Chem Phys 38:3098

    CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory, vol 2. Plenum Press, New York

  37. Huzinaga S (1965) J Chem Phys 42:1293

    Article  Google Scholar 

  38. Dunning TH, Hay PJ (1977) In: Schaefer HF (ed) Modern theoretical chemistry, vol 3. Plenum Press, New York, p 1

  39. Huzinaga S (1971) Approximate atomic wavefunctions II. University of Alberta, Edmonton

    Google Scholar 

  40. Lee TJ, Schaefer HF III (1985) J Chem Phys 83:1784

    Article  CAS  Google Scholar 

  41. Scrocco E, Tomasi J (1973) Top Curr Chem 42:95–170

    CAS  Google Scholar 

  42. Murray JS, Politzer P (2011) WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS (2013) In: Ghosh SK, Chattaraj PK (eds) Concepts and methods in modern theoretical chemistry, Vol. 1: Electronic structure and reactivity. CRC Press, Boca Raton, FL, pp 181–199

  44. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  45. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440

    Article  CAS  Google Scholar 

  46. Dinadayalane T, Murray JS, Concha MC, Politzer P, Leszczynsksi J (2010) J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  47. Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) J Phys Chem A 116:8644–8652

    Article  CAS  Google Scholar 

  48. Murray JS, Shields ZP-I, Lane P, Macaveiu L, Bulat FA (2013) J Mol Model 19:2825–2833

    Article  CAS  Google Scholar 

  49. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  50. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) J Mol Model 19:2739–2746

    Google Scholar 

  51. Politzer P, Murray JS (2013) CrystEngComm 15:3145–3150

    Article  CAS  Google Scholar 

  52. Pau C-F, Hehre WJ (1982) J Phys Chem 86:321–322

    Article  CAS  Google Scholar 

  53. Bowman JM, Gazdy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308–323

    Article  CAS  Google Scholar 

  54. Gutiérrez-Oliva S, Diaz S, Toro-Labbé A, Lane P, Murray JS, Politzer P (2013) Mol Phys. doi:10.1080/00268976.2013.819452

  55. Politzer P, Murray JS (2012) Theor Chem Acc 131:1114(1–10)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof Peter Politzer for useful discussions. Facilities from University of Mauritius are acknowledged. The authors would also like to thank anonymous reviewers for their comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane S. Murray or Ponnadurai Ramasami.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundhun, A., Ramdany, M.D., Murray, J.S. et al. Density functional theory study of Te(CN)2, Te(CN)(NC), and Te(NC)2 and their isomerizations. Struct Chem 24, 2047–2057 (2013). https://doi.org/10.1007/s11224-013-0304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0304-3

Keywords

Navigation