Skip to main content
Log in

Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Following recent experimental works, herein we investigated chemical functionalization of a BN graphene-like sheet with hydrazine (N2H4) molecule based on the density functional theory. We found that the functionalization of the pristine sheet is not possible; while the presence of some structural defects such as Stone–Wales is essential to make it feasible. Functionalization energy of the defected sheet is calculated to be in the range of −6.1 to −7.4 kcal/mol at B3LYP/6-31G (d) level. Based on the obtained results, the functionalized BN sheet is found to be more soluble in water in comparison with the pristine sheet which is in good agreement with previous experimental reports. Also, it was found that the electronic properties of the defected sheet are slightly changed upon the chemical functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Hargittai I (2010) Struct Chem 21:1151

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    Article  CAS  Google Scholar 

  4. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  5. Warner JH, Rümmeli MH, Bachmatiuk A, Büchner B (2010) ACS Nano 4:1299

    Article  CAS  Google Scholar 

  6. Nag A, Raidongia K, Hembram KPSS, Datta R, Wanghmare UV, Rao CNR (2010) ACS Nano 4:1539

    Article  CAS  Google Scholar 

  7. Preobrajenski AB, Nesterov MA, Ng ML, Vinogradov AS, Mårtensson N (2007) Chem Phys Lett 446:119

    Article  CAS  Google Scholar 

  8. Zhang Y, Tan YW, Storner HL, Kim P (2005) Nature (London) 438:201

    Article  CAS  Google Scholar 

  9. Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Nat Phys 2:177

    Article  Google Scholar 

  10. Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2:620

    Article  CAS  Google Scholar 

  11. Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) J Phys Chem C 115:2679

    Article  CAS  Google Scholar 

  12. Lin Y, Williams TV, Connell JW (2010) J Phys Chem Lett 1:277

    Article  Google Scholar 

  13. Nazarov AS, Demin VN, Grayfer ED, Bulavchenko AI, Arymbaeva AT, Shin HJ, Choi JY, Fedrov VE (2012) Chem Asian J 7:554

    Article  CAS  Google Scholar 

  14. Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S, Matsunaga N, Nguyen K, Su S, Windus T, Dupuis M (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  15. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  Google Scholar 

  16. Contreras M, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573

    Article  CAS  Google Scholar 

  17. Tetasang S, Keawwangchai S, Wanno B, Ruangpornvisuti V (2012) Struct Chem 23:7

    Article  CAS  Google Scholar 

  18. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theor Comput 6:1351

    Article  CAS  Google Scholar 

  19. Gan L-H, Chang Q, Xu L, Liu Z-H, Du J, Tao C-Y (2012) Struct Chem 23:711

    Article  CAS  Google Scholar 

  20. Peng S, Li X, Zhang D, Zhang Y (2009) Struct Chem 20:789

    Article  CAS  Google Scholar 

  21. Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Physica E 44:1357

    Article  Google Scholar 

  22. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) Physica E 44:1963

    Article  CAS  Google Scholar 

  23. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653

    Article  CAS  Google Scholar 

  24. Tomić S, Montanari B, Harrison NM (2008) Phys E 40:2125

    Article  Google Scholar 

  25. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS Nano 4:2979

    Article  CAS  Google Scholar 

  26. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86

    Article  CAS  Google Scholar 

  27. Zhang YH, Zhou KG, Gou XC, Xie KF, Zhang KL, Peng Y (2010) Chem Phys Lett 484:266

    Article  CAS  Google Scholar 

  28. Andzelm J, Kolmel C (1995) J Chem Phys 103:9312

    Article  CAS  Google Scholar 

  29. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian, Pittsburgh

    Google Scholar 

  30. Lewars E (2003) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic, Norwell

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshtian, J., Peyghan, A.A. & Bagheri, Z. Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect. Struct Chem 24, 1565–1570 (2013). https://doi.org/10.1007/s11224-012-0189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0189-6

Keywords

Navigation