Skip to main content
Log in

The role of Fe–X···X–Fe contacts in the crystal structures of [(2-iodopyridinium)2FeX4]X (X = Cl, Br)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The analogy of chloride–chloride contacts in compounds containing Fe–Cl1···Cl2–Fe synthons with well-studied organic C–Cl1···Cl2–C interactions has been investigated. The crystal structures of the two tetrahaloferrate(III) salts, [(2-iodopyridinium)2FeX4]X (X = Cl, Br) have been determined. Analysis of these two isomorphous structures and related published structures shows that the arrangement of Fe–Cl1···Cl2–Fe synthons is similar to that of C–Cl1···Cl2–C with the Fe–Cl1···Cl2 and Cl1···Cl2–Fe angles being ~150°. While inter-chlorine distances are less than the sum of van der Waals radii in C–Cl1···Cl2–C units, they are equal to, or longer, than the sum of van der Waals radii in the corresponding Fe–Cl1···Cl2–Fe contacts. This might indicate that the arrangement of Fe–Cl1···Cl2–Fe synthons occurs predominately to reduce repulsive forces rather than as a result of attractive forces. However, it is observed that the halide–halide distance in [(2-iodopyridinium)2FeBr4]Br is shorter than in the isostructural chloride species, which can be explained by the fact that bromine is softer than chlorine. Several intermolecular forces unite the cations and anions within the crystalline lattice of [(2-iodopyridinium)2FeX4]X including N–H···X, C–I···X–Fe, N(π)···X–Fe, N(π)···I–C, and Fe–X1···X2–Fe contacts. The calculated electron density and electrostatic potential of the [FeX4] anions and the organic iodopyridinium cations was used to describe the arrangement of these synthons and the hierarchy of the strengths of the respective contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aakeröy CB, Champness NR, Janiak C (2010) CrystEngComm 12:22

    Article  Google Scholar 

  2. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12:8952

    Article  CAS  Google Scholar 

  3. Brammer L, Zordan F, Espallargas GM, Purver SL, Marin LA, Adams H (2004) ACA Trans 39:114

    CAS  Google Scholar 

  4. Brisdon AK (2007) Annu Rep Prog Chem, Sect A 103:126

    Article  CAS  Google Scholar 

  5. Desiraju GR, Parthasarathy R (1989) J Am Chem Soc 111:8725

    Article  CAS  Google Scholar 

  6. Fourmigue M (2009) Curr Opin Solid State Mater Sci 13:36

    Article  CAS  Google Scholar 

  7. Lommerse JP, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108

    Article  CAS  Google Scholar 

  8. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  9. Metrangolo P, Resnati G (eds) (2008) Halogen bonding fundamentals and applications, vol 126. Structure and bonding. Springer, Heidelberg

    Google Scholar 

  10. Fourmigue M (ed) (2008) Halogen bonding fundamentals and applications, vol 126. Structure and bonding. Springer, Berlin

    Google Scholar 

  11. Butcher RTN, Juan J, Ribas-Arino J, Sandvik AW, Turnbull MM, Landee CP, Wells BM, Awwadi FF (2009) Chem Commun 11: 1359

  12. Schlueter JA, Park H, Halder GJ, Armand WR, Dunmars C, Chapman KW, Manson JL, Singleton J, McDonald R, Plonczak A, Kang J, Lee C, Whangbo M-H, Lancaster T, Steele AJ, Franke I, Wright JD, Blundell SJ, Pratt FL, de George J, Turnbull MM, Landee CP (2012) Inorg Chem 51:2121

    Article  CAS  Google Scholar 

  13. Willett RD, Awwadi FF, Butcher R, Haddad SF, Twamley B (2003) Cryst Growth Des 3:301

    Article  CAS  Google Scholar 

  14. Zordan F, Espallargas GM, Brammer L (2006) CrystEngComm 8:425

    Article  CAS  Google Scholar 

  15. Ormond-Prout JE, Smart P, Brammer L (2012) Cryst Growth Des 12(1):205

    Article  CAS  Google Scholar 

  16. Freytag M, Jones PG, Ahrens B, Fischer AK (1999) New J Chem 23:1137

    Article  CAS  Google Scholar 

  17. Price SL, Stones AJ, Lusca J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910

    Article  CAS  Google Scholar 

  18. Jagarlapudi AR, Sarma P, Desiraju GR (1986) Acc Chem Res 19:222

    Article  Google Scholar 

  19. Espallargas GM, Brammer L, Allan DR, Pulham CR, Robertson N, Warren JE (2008) J Am Chem Soc 130:9058

    Article  CAS  Google Scholar 

  20. Kobayashi H, Tomita H, Naito T, Kobayashi A, Sakai F, Watanabe T, Cassoux P (1996) J Am Chem Soc 118:368

    Article  CAS  Google Scholar 

  21. Awwadi FF, Willett RD, Twamley B (2007) Cryst Growth Des 7:624

    Article  CAS  Google Scholar 

  22. Zordan F, Purver SL, Adams H, Brammer L (2005) CrystEngComm 7:350

    Article  CAS  Google Scholar 

  23. Bosch E, Barnes CL (2002) Cryst Growth Des 2:299

    Article  CAS  Google Scholar 

  24. Rosokha SV, Neretin IS, Rosokha TY, Hecht J, Kochi Jk (2006) Heteroatom Chem 17:449

    Article  CAS  Google Scholar 

  25. Awwadi FF, Haddad SF, Willett RD, Twamley B (2010) Cryst Growth Des 10:158

    Article  CAS  Google Scholar 

  26. Ovens JS, Truong KN, Leznoff DB (2012) Dalton Trans 41(4):1345

    Article  CAS  Google Scholar 

  27. Sheldrick GM (1997) Program for crystal structure refinement, vol SHELXL-97. University of Göttingen, Göttingen

    Google Scholar 

  28. Bondi A (1964) J Phys Chem A 68:441

    Article  CAS  Google Scholar 

  29. Awwadi FF, Willett RD, Peterson K, Twamley B (2007) J Phys Chem A 111:2319

    Article  CAS  Google Scholar 

  30. Awwadi FF, Willett RD, Twamley B (2009) J Mol Struct 918(1–3):116

    Article  CAS  Google Scholar 

  31. Adams CJ, Colquhoun HM, Crawford PC, Lusi M, Orpen AG (2007) AngewChem, IntEd 46:1124

    CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseri GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas OD, Malick K, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, iashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision D.01. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas F. Awwadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awwadi, F.F., Taher, D., Maabreh, A. et al. The role of Fe–X···X–Fe contacts in the crystal structures of [(2-iodopyridinium)2FeX4]X (X = Cl, Br). Struct Chem 24, 401–408 (2013). https://doi.org/10.1007/s11224-012-0090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0090-3

Keywords

Navigation