Skip to main content
Log in

Influence of insertion of a noble gas atom on halogen bonding in H2O···XCCNgF and H3N···XCCNgF (X = Cl and Br; Ng = Ar, Kr, and Xe) complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The H2O···XCCNgF and H3N···XCCNgF (X = Cl and Br; Ng = Ar, Kr, and Xe) complexes have been studied with quantum chemical calculations at the MP2/aug-cc-pVTZ level. The results show that the inserted noble gas atom has an enhancing effect on the strength of halogen bond, and this enhancement is weakened with the increase of noble gas atomic number. The methyl and Li substituents in the electron donor strengthen the halogen bond. The interaction energy increases from −3.75 kcal/mol in H3N–BrCCF complex to −9.66 kcal/mol in H2LiN–BrCCArF complex. These complexes have been analyzed with atoms in molecules, natural bond orbital, molecular electrostatic potentials, and energy decomposition calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartlett N (1962) Proc Chem Soc 1962:218

    Google Scholar 

  2. Pettersson M, Lundell J, Rasanen M (1995) J Chem Phys 102:6423

    Article  CAS  Google Scholar 

  3. Pettersson M, Lundell J, Rasanen M (1995) J Chem Phys 103:205

    Article  CAS  Google Scholar 

  4. Pettersson M, Nieminen J, Khriachtchev L, Rasanen M (1997) J Chem Phys 107:8423

    Article  CAS  Google Scholar 

  5. Pettersson M, Lundell J, Khriachtchev L, Rasanen M (1998) J Chem Phys 109:618

    Article  CAS  Google Scholar 

  6. Pettersson M, Lundell J, Khriachtchev L, Isoniemi E, Rasanen M (1998) J Am Chem Soc 120:7979

    Article  CAS  Google Scholar 

  7. Pettersson M, Khriachtchev L, Lundell J, Rasanen M (1999) J Am Chem Soc 121:11904

    Article  CAS  Google Scholar 

  8. Bihary Z, Chaban GM, Gerber RB (2002) J Chem Phys 116:5521

    Article  CAS  Google Scholar 

  9. Pettersson M, Khriachtchev L, Lignell A, Rasanen M, Bihary Z, Gerber RB (2002) J Chem Phys 116:2508

    Article  CAS  Google Scholar 

  10. Lundell J, Khriachtchev L, Pettersson M, Rasanen M (2000) Low Temp Phys 26:680

    Article  CAS  Google Scholar 

  11. Khriachtchev L, Pettersson M, Lundell J, Rasanen M (2001) J Chem Phys 114:7727

    Article  CAS  Google Scholar 

  12. Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Rasanen M (2000) Nature (Lond.) 406:874

    Article  CAS  Google Scholar 

  13. Wong MW (2000) J Am Chem Soc 122:6289

    Article  CAS  Google Scholar 

  14. Yockel S, Gawlik E, Wilson AK (2007) J Phys Chem A 111:11261

    Article  CAS  Google Scholar 

  15. Avramopoulos A, Reis H, Li J, Papadopoulos MG (2004) J Am Chem Soc 126:6179

    Article  CAS  Google Scholar 

  16. Holka F, Avramopoulos A, Loboda O, Kellö V, Papadopoulos MG (2009) Chem Phys Lett 472:185

    Article  CAS  Google Scholar 

  17. Avramopoulos A, Papadopoulos MG, Sadlej AJ (2002) J Chem Phys 117:10026

    Article  CAS  Google Scholar 

  18. McDowell, Sean AC (2003) J Chem Phys 118:4066

    Article  CAS  Google Scholar 

  19. McDowell, Sean AC (2003) Chem Phys Lett 368:649

    Article  CAS  Google Scholar 

  20. McDowell, Sean AC (2005) Chem Phys Lett 406:228

    Article  CAS  Google Scholar 

  21. McDowell, Sean AC (2003) J Chem Phys 118:7283

    Article  CAS  Google Scholar 

  22. McDowell, Sean AC (2003) J Chem Phys 119:3711

    Article  CAS  Google Scholar 

  23. McDowell, Sean AC (2004) J Chem Phys 121:5728

    Article  CAS  Google Scholar 

  24. Solimannejad M, Boutalib A (2006) ChemPhys 320:275

    CAS  Google Scholar 

  25. Solimannejad M, Alkorta I (2006) Chem Phys 324:459

    Article  CAS  Google Scholar 

  26. Solimannejad M, Boutalib A (2004) Chem Phys Lett 389:359

    Article  CAS  Google Scholar 

  27. Solimannejad M, Scheiner S (2005) J Phys Chem A 109:6137

    Article  CAS  Google Scholar 

  28. Solimannejad M, Scheiner S (2005) J Phys Chem A 109:11933

    Article  CAS  Google Scholar 

  29. Singh PC (2011) Chem Phys Lett 515:206

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  31. Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Science 323:1461

    Article  CAS  Google Scholar 

  32. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114

    Article  CAS  Google Scholar 

  33. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  34. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789

    Article  CAS  Google Scholar 

  35. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188

    Article  CAS  Google Scholar 

  36. Voth AR, Khuu P, Oishi K, Ho PS (2009) Nat Chem 1:74

    Article  CAS  Google Scholar 

  37. Li QZ, Liu ZB, Jing B, Li WZ, Cheng JB, Gong BA, Sun JZ (2010) Spectrochi Acta A 77:506

    Article  Google Scholar 

  38. Frisch MJ Trucks GW Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J. E, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford

  39. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  40. Riley K, Merz KM (2007) J Phys Chem A 111:1688

    Article  CAS  Google Scholar 

  41. Solimannejad M, Scheiner S (2008) J Phys Chem A 112:4120

    Article  CAS  Google Scholar 

  42. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) J Phys Chem A 112:10856

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  44. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  45. Biegler-König F (2000) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

  46. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679

    Article  CAS  Google Scholar 

  47. Bukowski R, Cencek W, Jankowski P, Jeziorski B, Jeziorska M, Kucharski SA, Misquitta AJ, Moszynski R, Patkowski K, Rybak S, Szalewicz K, Williams HL,P. Wormer ES (2003) SAPT2002: An Ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. Sequential and Parallel Versions. University of Delaware, Newark

  48. Cheng JB, Wang YL, Li QZ, Liu ZB, Li WZ, Gong BA (2009) J Phys Chem A 113:5235

    Article  CAS  Google Scholar 

  49. Liu XF, Li QZ, Li R, Li WZ, Cheng JB (2011) Spectrochi Acta A 84:68

    Article  CAS  Google Scholar 

  50. Li QZ, Wu GS, Yu ZW (2006) J Am Chem Soc 128:1438

    Article  CAS  Google Scholar 

  51. Li QZ, An XL, Luan F, Li WZ, Gong BA, Cheng JB (2008) J Phys Chem A 112:3985

    Article  CAS  Google Scholar 

  52. Li QZ, Jing B, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2010) J Chem Phys 133:114303

    Article  Google Scholar 

  53. Cheng JB, Li R, Li QZ, Jing B, Liu ZB, Li WZ, Gong BA, Sun JZ (2010) J Phys Chem A 114:10320

    Article  CAS  Google Scholar 

  54. Koch U, Popelier PLA (1995) J Phys Chem 999:747

    Google Scholar 

  55. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) J Phys Chem A 108:10865

    Article  CAS  Google Scholar 

  56. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  57. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (20973149), the Outstanding Youth Natural Science Foundation of Shandong Province (JQ201006), and the Program for New Century Excellent Talents in University. It was also supported in part by the open project of State Key Laboratory of supramolecular structure and materials (SKLSSM201216) from Jilin University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Zhong Li or Bao-An Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2012_36_MOESM1_ESM.doc

Figure S1. Relationship of the interaction energy and the electron density at the intermolecular BCP in the O···Cl (■), O···Br (▲), and N···Br (♦) halogen-bonded complexes (DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, QZ., Liu, WM., Li, R. et al. Influence of insertion of a noble gas atom on halogen bonding in H2O···XCCNgF and H3N···XCCNgF (X = Cl and Br; Ng = Ar, Kr, and Xe) complexes. Struct Chem 24, 25–31 (2013). https://doi.org/10.1007/s11224-012-0036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0036-9

Keywords

Navigation