Skip to main content

Advertisement

Log in

Computational studies on 3,5,7,10,12,14,15,16-octanitro-3,5,7,10,12,14,15,16-octaaza-pentacyclo[7.5.1.12,8.04,13.06,11]hexadecane as potential high-energy-density compound

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The B3LYP/6-31G(d) method of density functional theory was used to study molecular geometry, electronic structure, infrared spectrum, and thermodynamic properties. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. Thermal stability of 3,5,7,10,12,14,15,16-octanitro-3,5,7,10,12,14,15,16-octaaza-pentacyclo[7.5.1.12,8.04,13.06,11]hexadecane (cage-HMX) was investigated by calculating the bond dissociation energy at unrestricted B3LYP/6-31G(d) level. The calculated results show that the first step of pyrolysis is the rupture of the N–NO2 bond. The crystal structure obtained by molecular mechanics belongs to P21 space group, with lattice parameters a = 8.866 Å, b = 11.527 Å, c = 13.011 Å, Z = 4, and ρ = 2.219 g cm−3. Both the detonation velocity of 9.79 km s−1 and the detonation pressure of 45.45 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability as a high-energy-density compound, cage-HMX essentially satisfies this requirement. These results provide basic information for molecular design of novel HEDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) J Phys Chem A 115:6617

    Article  CAS  Google Scholar 

  2. Klapotke TM, Piercey DG, Stierstorfee J (2011) Propelllants Explos Pyrotech 36:160

    Article  Google Scholar 

  3. Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2010) J Hazard Mater 177:703

    Article  CAS  Google Scholar 

  4. Zhang JG, Niu XQ, Zhang SW, Zhang TL, Huang HS, Zhou ZN (2011) Comput Theor Chem 964:291

    Article  CAS  Google Scholar 

  5. Li XH, Zhang RZ, Zhang XZ (2010) J Hazard Mater 183:622

    Article  CAS  Google Scholar 

  6. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589

    Article  CAS  Google Scholar 

  7. Li JS (2010) Propelllants Explos Pyrotech 35:182

    Article  Google Scholar 

  8. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) J Hazard Mater 151:289

    Article  CAS  Google Scholar 

  9. Rahm M, Brinck T (2010) Chem Eur J 16:6590

    CAS  Google Scholar 

  10. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498

    Article  CAS  Google Scholar 

  11. Bayat Y, Mokhtari J (2011) Defence Sci J 61:171

    CAS  Google Scholar 

  12. Odbadrakh K, Lewis JP, Nicholson DM (2010) J Phys Chem C 114:7535

    Article  CAS  Google Scholar 

  13. Qui L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem B 110:3797

    Article  Google Scholar 

  14. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929

    Article  CAS  Google Scholar 

  15. Richard RM, Ball DW (2008) J Mol Struct 858:85

    Article  CAS  Google Scholar 

  16. Maksimowski P, Fabijanska A, Adamiak J (2010) Propelllants Explos Pyrotech 35:353

    Article  CAS  Google Scholar 

  17. Bayat Y, Hajimirsadeghi SS, Pourmortazavi SM (2011) Org Proc Res Dev 15:810

    Article  CAS  Google Scholar 

  18. Lin CP, Chang CP, Chou YC, Chu YC, Shu CM (2010) J Hazard Mater 176:549

    Article  CAS  Google Scholar 

  19. Zhang MX, Eaton PE, Gilardi R (2000) Angew Chem Int 39:401

    Article  CAS  Google Scholar 

  20. Ravi P, Gore GM, Sikder AK, Tewari SP (2012) Int J Quantum Chem 112:1667

    Article  CAS  Google Scholar 

  21. Sharia O, Kuklja MM (2012) J Phys Chem B 115:12677

    Article  Google Scholar 

  22. Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603

    Article  CAS  Google Scholar 

  23. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) J Phys Chem A 113:9404

    Article  CAS  Google Scholar 

  24. Turker L, Atalar T, Gumus S, Camur Y (2009) J Hazard Mater 167:440

    Article  Google Scholar 

  25. Zhang GH, Zhao YF, Hao FY, Zhang PX, Song XD (2009) Int J Quantum Chem 109:226

    Article  CAS  Google Scholar 

  26. Fan XW, Ju XH, Xiao HM (2008) J Hazard Mater 156:342

    Article  CAS  Google Scholar 

  27. Becke AD (1992) J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  31. Hill TL (1960) Introduction to statistic thermodynamics. Addison-Wesley, New York

    Google Scholar 

  32. Kamlet MJ, Jacobs ST (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  33. Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence Industry Press, Beijing

    Google Scholar 

  34. Lide DR (ed) (2002) CRC handbook of chemistry and physics. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  35. Materials Studio 4.4. (2008) Accelrys

  36. Chernikova NY, Belsky VK, Zorkii PM (1990) J Struct Chem 31:661

    Article  Google Scholar 

  37. Mighell AD, Himes VL, Rodgers JR (1983) Acta Crystallogr A 39:737

    Article  Google Scholar 

  38. Wilson AJC (1988) Acta Crystallogr A 44:715

    Article  Google Scholar 

  39. Srinivasan R (1992) Acta Crystallogr A 48:917

    Article  Google Scholar 

  40. Baur WH, Kassner D (1992) Acta Crystallogr B 48:356

    Article  Google Scholar 

  41. Cao XZ, Song TY, Wang XQ (1987) Inorganic chemistry. Higher Education Press, Beijing

    Google Scholar 

  42. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920

    Article  CAS  Google Scholar 

  43. Jursic BS (1997) J Chem Phys 106:2555

    Article  CAS  Google Scholar 

  44. Jursic BS (1997) J Mol Struct 391:75

    Article  CAS  Google Scholar 

  45. Jursic BS (1997) J Mol Struct 417:99

    Article  CAS  Google Scholar 

  46. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  47. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090

    Article  CAS  Google Scholar 

  48. Xu XJ, Zhu WH, Xiao HM (2008) Chin J Chem 26:602

    Article  Google Scholar 

  49. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  50. Qiu LM, Ye DY, Wei W, Chen KH, Hou JX, Zheng J, Gong XD, Xiao HM (2008) J Mol Struct 866:63

    Article  CAS  Google Scholar 

  51. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498

    Article  CAS  Google Scholar 

  52. Sikder AK, Sikder N (2004) J Hazard Mater 112:1

    Article  CAS  Google Scholar 

  53. Politzer P, Murray JS (2011) Central Europ J Energet Mater 3:209

    Google Scholar 

  54. Chung G, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647

    Article  CAS  Google Scholar 

  55. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  56. Li YJ, Song J, Li CY, Yang JM, Lue J, Wang WL (2009) Acta Chim Sin 67:1437

    CAS  Google Scholar 

  57. Gonzalez AC, Larson CW, McMillen DF, Golden DM (1985) J Phys Chem 89:4809

    Article  CAS  Google Scholar 

  58. Sharma J, Owens F (1979) J Chem Phys Lett 280:61

    Google Scholar 

  59. Isayev O, Gorb L, Qasim M, Leszczynski J (2008) J Phys Chem B 112:11005

    Article  CAS  Google Scholar 

  60. Fukui K (1975) Theory of orientation and stereoselection, reactivity and structure, concepts in organic Chemistry. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This study was supported by the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (Grant no. 11076017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Lu, M. Computational studies on 3,5,7,10,12,14,15,16-octanitro-3,5,7,10,12,14,15,16-octaaza-pentacyclo[7.5.1.12,8.04,13.06,11]hexadecane as potential high-energy-density compound. Struct Chem 24, 139–145 (2013). https://doi.org/10.1007/s11224-012-0033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0033-z

Keywords

Navigation