Skip to main content
Log in

Conformational aspects of glutathione tripeptide: electron density topological & natural bond orbital analyses

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Glutathione tripeptide (γ-glutamyl-cysteinyl-glycine) is a flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond, its charge and the environment. This study employs DFT-B3LYP method with the 6-31+G (d,p) basis set to carry out conformational analysis of neutral, zwitterionic, cationic, and anionic forms of glutathione. In analyzing the structural characteristics of these structures, intramolecular hydrogen bonds were identified and characterized in details by topological parameters such as electron density ρ(r) and Laplacian of electron density \( \nabla^{2} \)ρ(r) from Bader’s atom in molecules theory. Charge transfer energies based on natural bond orbital analysis are also considered to interpret these intramolecular hydrogen bonds. Our results show that these hydrogen bonds are partially electrostatic and partially covalent in nature, in which the covalent contribution increases as the stabilization energy of hydrogen bond increases. Furthermore, the back bone and side chain (Ramachandran map) orientations of various ionic forms of glutathione have been studied and conformation of each constitution of glutathione tripeptide (i.e., Glu, Cys, and Gly moieties) was determined. In most species side chain conformation were found to be hindered gauche–gauche orientation by intramolecular hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4

Similar content being viewed by others

References

  1. Dickinson DA, Forman HJ (2002) Biochem Pharmacol 64:1019

    Article  CAS  Google Scholar 

  2. Meister A, Anderson ME (1983) Annu Rev Biochem 52:711

    Article  CAS  Google Scholar 

  3. Rabenstein DL, Guevremont R, Evans CA (1997) Metal ions in biological systems, vol 9. Dekker, New York, pp 103–141

    Google Scholar 

  4. Tomaszewska B (2002) In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 37–58

    Google Scholar 

  5. Krezel A, Szczepanik W, Sokolowska M, Jewska-Bojczuk M, Bal W (2003) Chem Res Toxicol 16:855

    Article  CAS  Google Scholar 

  6. Sies H (1999) Free Rad Biol Med 27:916

    Article  CAS  Google Scholar 

  7. Jacob C, Maret W, Vallee BL (1998) Proc Natl Acad Sci USA 95:3489

    Article  CAS  Google Scholar 

  8. Reedijk J (1999) Chem Rev 99:2499

    Article  CAS  Google Scholar 

  9. Teuben JM, Reedijk J (2000) J Biol Inorg Chem 5:463

    CAS  Google Scholar 

  10. Wright WB (1958) Acta Crystallogr 11:632

    Article  CAS  Google Scholar 

  11. Gorbitz CH (1987) Acta Crystallogr 41:362

    Google Scholar 

  12. Oakley AJ, Lo Bello M, Battistoni A, Ricci G, Rossjohn J, Villar HO, Parker MW (1997) J Mol Biol 274:84

    Article  CAS  Google Scholar 

  13. Raghunathan S, Chandross J, Kretsinger RH, Alliston TJ, Penington CJ, Rule GS (1994) J Mol Biol 238:815

    Article  CAS  Google Scholar 

  14. Rabenstein DL (1973) J Am Chem Soc 95:2797

    Article  CAS  Google Scholar 

  15. York MJ, Beilharz GR, Kuchel PW (1987) Int J Peptide Protein Res 29:638

    Article  CAS  Google Scholar 

  16. Nicotra M, Paci M, Sette M, Oakley AJ, Parker MW, Lo Bello M, Caccuri AM, Federici G, Ricci G (1998) Biochemistry 37:3020

    Article  CAS  Google Scholar 

  17. McCallum SA, Hitchens TK, Torborg C, Rule GS (2000) Biochemistry 39:7343

    Article  CAS  Google Scholar 

  18. Laurence PR, Thomson C (1980) Theor Chim Acta 57:2541

    Article  Google Scholar 

  19. Rauk A, Armstrong DA, Berges J (2001) Can J Chem 79:405

    Article  CAS  Google Scholar 

  20. De Blumenfeld MP, Hikichi N, Hansz M, Ventura ON (1990) J Mol Struct (Theochem) 210:467

    Article  Google Scholar 

  21. Cubas ML, Ventura ON (1991) J Braz Chem Soc 2:111

    CAS  Google Scholar 

  22. Wolfe S, Weaver DF, Yang K (1988) Can J Chem 66:2687

    Article  CAS  Google Scholar 

  23. Singh BK, Mishra PC, Garg BS (2007) Spectrochim Acta A 67:719

    Article  Google Scholar 

  24. Klipfel MW, Zamora MA, Rodriguez AM, Fidanza NG, Enriz RD, Csizmadia IG (2003) J Phys Chem A 107:5079

    Article  CAS  Google Scholar 

  25. Zamora MA, Baldoni HA, Rodriguez AM, Enriz RD, Sosa CP, Perczel A, Kucsman A, Farkas O, Deretey E, Vank JC, Csizmadia IG (2002) Can J Chem 80:832

    Article  CAS  Google Scholar 

  26. Spartan ‘06V102’ (2006) Wavefunction, Inc., Irvine

  27. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  29. Reed AE, Weinhold F (1985) J Chem Phys 83:1736

    Article  CAS  Google Scholar 

  30. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  31. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  32. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  33. Chocholousova J, Vladimir Spirko V, Hobza P (2004) Phys Chem Chem Phys 6:37–41

    Article  CAS  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  35. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  36. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

  37. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  38. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Ghomi M, Hovorun DM (2007) Chem Phys Lett 447:140

    Article  CAS  Google Scholar 

  39. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2011) Biomol Struct Dyn 1:51

    Article  Google Scholar 

  40. Bader RFW (2002) AIM2000 program package, Ver. 2.0. McMaster University, Hamilton

    Google Scholar 

  41. IUPAC-IUB Commission on Biochemical Nomenclature (1970) Biochemistry 9:3471

    Article  Google Scholar 

  42. Jelsch C, Didierjean C (1999) Acta Crystallogr C 55:1538

    Article  Google Scholar 

  43. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163

    Article  CAS  Google Scholar 

  44. Huang Zh, Yu W, Lin Z (2006) J Mol Struct (Theochem) 801:7

    Article  CAS  Google Scholar 

  45. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  46. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  47. Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, Harlow

    Google Scholar 

  48. Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:1001

    Article  CAS  Google Scholar 

  49. Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360

    Article  CAS  Google Scholar 

  50. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from Sharif University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fattahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliakbar Tehrani, Z., Fattahi, A. Conformational aspects of glutathione tripeptide: electron density topological & natural bond orbital analyses. Struct Chem 24, 147–158 (2013). https://doi.org/10.1007/s11224-012-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0023-1

Keywords

Navigation