Skip to main content
Log in

Substitution effects in phenyl and N-pyrrole derivatives along the periodic table

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A theoretical study of the monosubstitution effects of all the atoms of the second and third row of the periodic table on the phenyl and pyrrole rings has been carried out by means of B3LYP/6-31 + G(d,p) DFT calculations. The geometric and electronic properties, calculated using the Atoms In Molecules methodology, have been analyzed. Some of the results have been rationalized based on the electronegativity of the substituents. In addition, the different parameters obtained have been compared with different aromaticity indexes (HOMA, NICS, and ASE), as well as with Taft’s σ0 R parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. John Wiley & Sons, Inc., New York

    Google Scholar 

  2. Krygowski TM, Stepien BT (2005) Chem Rev 105:3482

    Article  CAS  Google Scholar 

  3. Krygowski TM, Dobrowolski MA, Zborowski K, Cyranski MK (2006) J Phys Org Chem 19:889

    Article  CAS  Google Scholar 

  4. Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Sola M (2004) J Org Chem 69:6634

    Article  CAS  Google Scholar 

  5. Matito E, Solà M, Salvador P, Duran M (2007) Faraday Discuss 135:325

    Article  CAS  Google Scholar 

  6. Fernandez I, Frenking G (2007) Faraday Discuss 135:403

    Article  CAS  Google Scholar 

  7. Alonso M, Herradón B (2007) Chem Eur J 13:3913

    Article  CAS  Google Scholar 

  8. Giambiagi M, de Giambiagi MS, Silva CDD, de Figueiredo AP (2000) Phys Chem Chem Phys 2:3381

    Article  CAS  Google Scholar 

  9. Juselius J, Sundholm D (1999) Phys Chem Chem Phys 1:3429

    Article  CAS  Google Scholar 

  10. Kovacevic B, Baric D, Maksic ZB, Muller T (2004) Chemphyschem 5:1352

    Article  CAS  Google Scholar 

  11. Mó O, Yañéz M, Llamas-Saiz AL, Foces-Foces C, Elguero J (1995) Tetrahedron 51:7045

    Article  Google Scholar 

  12. Begtrup M, Balle T, Claramunt RM, Sanz D, Jiménez JA, Mó O, Yañéz M, Elguero J (1998) Theochem-J Mol Struc 453:255

    Article  CAS  Google Scholar 

  13. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  14. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  15. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian-03. Gaussian, Inc., Wallingford CT

    Google Scholar 

  17. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  18. Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317

    Article  Google Scholar 

  19. Alkorta I, Picazo O (2005) Arkivoc ix:305

    Google Scholar 

  20. Krygowski TM, Cyranski MK, Czarnocki Z, Hafelinger G, Katritzky AR (2000) Tetrahedron 56:1783

    Article  CAS  Google Scholar 

  21. Schleyer PvR, Jiao HJ (1996) Pure Appl Chem 68:209

    Article  CAS  Google Scholar 

  22. Krygowski TM (1993) J Chem Inf Comp Sci 33:70

    CAS  Google Scholar 

  23. Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  24. Schleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes NJRV (2001) Org Lett 3:2465

    Article  CAS  Google Scholar 

  25. Corminboeuf C, Heine T, Seifert G, Schleyer PV, Weber J (2004) Phys Chem Chem Phys 6:273

    Article  CAS  Google Scholar 

  26. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley & Sons, New York

    Google Scholar 

  27. Tamagawa K, Iijima T, Kimura M (1976) J Mol Struct 30:243

    Article  CAS  Google Scholar 

  28. Amirebrahimi V, Choplin A, Demaison J, Roussy G (1981) J Mol Spectrosc 89:42

    Article  CAS  Google Scholar 

  29. Lister DG, Tyler JK, Hog JH, Larsen NW (1974) J Mol Struct 23:253

    Article  CAS  Google Scholar 

  30. Larsen NW (1979) J Mol Struct 51:175

    Article  CAS  Google Scholar 

  31. Doraiswamy S, Sharma SD (1983) J Mol Struct 102:81

    Article  CAS  Google Scholar 

  32. Keidel FA, Bauer SH (1956) J Chem Phys 25:1218

    Article  CAS  Google Scholar 

  33. Naumov VA, Tafipol’skii MA, Samdal S (2003) Russ J Gen Chem 73:896

    Article  CAS  Google Scholar 

  34. Cradock S, Muir JM, Rankin DWH (1990) J Mol Struct 220:205

    Article  CAS  Google Scholar 

  35. Nygaard L, Nielsen JT, Kirchhei J, Maltesen G, Rastrupa J, Sorensen GO (1969) J Mol Struct 3:491

    Article  CAS  Google Scholar 

  36. Huber S, Ha TK, Bauder A (1997) J Mol Struct 413:93

    Article  Google Scholar 

  37. Glidewell C, Robiette AG, Sheldrick GM (1971) J Mol Struct 9:476

    Article  CAS  Google Scholar 

  38. Alkorta I, Barrios L, Rozas I, Elguero J (2000) J Mol Struc-Theochem 496:131

    Article  CAS  Google Scholar 

  39. Alkorta I, Rozas I, Elguero J (1998) J Mol Struc-Theochem 452:227

    Article  CAS  Google Scholar 

  40. Alkorta I, Rozas I, Elguero J (1998) Struct Chem 9:243

    Article  CAS  Google Scholar 

  41. Howard ST, Krygowski TM (1997) Can J Chem 75:1174

    Article  CAS  Google Scholar 

  42. Pauling L (1945) The nature of chemical bond. Cornell University Press, Ithaca, New York

    Google Scholar 

  43. Bromilow J, Brownlee RTC, Lopez VO, Taft RW (1979) J Org Chem 44:4766

    Article  CAS  Google Scholar 

  44. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR. American Chemical Society

Download references

Acknowledgments

This work was carried out with financial support from the Ministerio de Ciencia y Tecnología (Project No. CTQ2006-14487-C02-01/BQU) and Comunidad Autónoma de Madrid (Project MADRISOLAR, ref. S-0505/PPQ/0225). Thanks are given to the CTI (CSIC) for allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Additional information

Dedicated to Professor Tadeusz Marek Krygowski on his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zborowski, K., Alkorta, I. & Elguero, J. Substitution effects in phenyl and N-pyrrole derivatives along the periodic table. Struct Chem 18, 797–805 (2007). https://doi.org/10.1007/s11224-007-9245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9245-z

Keywords

Navigation