Skip to main content
Log in

Markov chain Monte Carlo with the Integrated Nested Laplace Approximation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrieu, C., Roberts, G.O.: The pseudo-marginal approach to efficient monte carlo computations. Genetics 37(2), 697–725 (2003)

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A., Bowman, A.W.: A look at some data on the Old Faithful geyser. Appl. Stat. 39, 357–365 (1990)

    Article  MATH  Google Scholar 

  • Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139–1160 (2003)

    Google Scholar 

  • Bivand, R.S., Gómez-Rubio, V., Rue, H.: Approximate Bayesian inference for spatial econometrics models. Spat. Stat. 9, 146–165 (2014)

    Article  MathSciNet  Google Scholar 

  • Bivand, R.S., Gómez-Rubio, V., Rue, H.: Spatial data analysis with R-INLA with some extensions. J. Stat. Softw. 63(20), 1–31 (2015)

    Article  Google Scholar 

  • Chen, M.-H., Shao, Q.-M., Igrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Springer, New York (2000)

    Book  Google Scholar 

  • Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90(432), 1313–1321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W., Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. Chapman & Hall, Boca Raton (1996)

    MATH  Google Scholar 

  • Gómez-Rubio, V., Bivand, R.S., Rue, H.: Estimating spatial econometrics models with integrated nested Laplace approximation (2017). arXiv preprint arXiv:1703.01273

  • Haining, R.: Spatial Data Analysis: Theory and Practice. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeting, J., David Madigan, A.R., Volinsky, C.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hubin, A., Storvik, G.: Efficient mode jumping MCMC for Bayesian variable selection in GLMM (2016a). arXiv preprint arXiv:1604.06398

  • Hubin, A., Storvik, G.: Estimating the marginal likelihood with integrated nested Laplace approximation (INLA) (2016b). arXiv preprint arXiv:1611.01450

  • James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning with Applications in R. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Joensuu, H., Reichardt, P., Eriksson, M., Hall, K.S., Vehtari, A.: Gastrointestinal stromal tumor: a method for optimizing the timing of CT scans in the follow-up of cancer patients. Radiology 271(1), 96–106 (2014). PMID: 24475826

    Article  Google Scholar 

  • LeSage, J., Pace, R.K.: Introduction to Spatial Econometrics. Chapman and Hall/CRC, Boca Raton (2009)

  • Li, Y., Brown, P., Rue, H., Al-Maini, M., Fortin, P.: Spatial modelling of Lupus incidence over 40 years with changes in census areas. J. R. Stat. Soc. Ser. C 61, 99–115 (2012)

    Article  MathSciNet  Google Scholar 

  • Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  • Lykou, A., Ntzoufras, I.: WinBUGS: a tutorial. Wiley Interdiscipl. Rev. Comput. Stat. 3, 385–396 (2011)

    Article  Google Scholar 

  • Marin, J.-M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on mixtures of distributions. In: Dey, D.K., Rao, C.R. (eds.) Handbook of Statistics, vol. 25. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Martins, T.G., Simpson, D., Lindgren, F., Rue, H.: Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68–83 (2013)

    Article  MathSciNet  Google Scholar 

  • Medina-Aguayo, F.J., Lee, A., Roberts, G.O.: Stability of noisy Metropolis–Hastings. Stat. Comput. 26, 1187–1211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machine. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  • Pettit, L.I.: The conditional predictive ordinate for the normal distribution. J. R. Stat. Soc. Ser. B (Methodol.) 52(1), 175–184 (1990)

    MathSciNet  MATH  Google Scholar 

  • Plummer, M.: rjags: Bayesian Graphical Models using MCMC. R package version 4-6 (2016)

  • Plummer, M., Best, N., Cowles, K., Vines, K.: CODA: Convergence diagnosis and output analysis for MCMC. R News 6(1), 7–11 (2006)

    Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 7(2), 319–392 (2009)

    Article  MATH  Google Scholar 

  • Rue, H., Riebler, A., Sørbye, S.H., Illian, J.B., Simpson, D.P., Lindgren, F.K.: Bayesian computing with INLA: a review. Annu. Rev. Stat. Appl. 4, 395–421 (2017)

    Article  Google Scholar 

  • Schafer, J.L.: Analysis of Incomplete Multivariate Data. Chapman & Hall, London (1997)

    Book  MATH  Google Scholar 

  • Sherlock, C., Thiery, A.H., Roberts, G.O., Rosenthal, J.S.: On the efficiency of pseudo-marginal random walk metropolis algorithms. Ann. Stat. 43(1), 238–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. B 64(4), 583–616 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 82–86 (1986)

  • van Buuren, S., Groothuis-Oudshoorn, K.: Mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45(1), 1–67 (2011)

    Google Scholar 

  • Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., Vehtari, A.: GPstuff: Bayesian modeling with Gaussian processes. J. Mach. Learn. Res. 14, 1175–1179 (2013)

    MathSciNet  MATH  Google Scholar 

  • Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., Winther, O.: Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. J. Mach. Learn. Res. 17(103), 1–38 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Virgilio Gómez-Rubio has been supported by Grant PPIC-2014-001, funded by Consejería de Educación, Cultura y Deportes (JCCM) and FEDER, and Grant MTM2016-77501-P, funded by Ministerio de Economía y Competitividad. We would also like to thank Prof. Aki Vehtari for his comments on a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgilio Gómez-Rubio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Rubio, V., Rue, H. Markov chain Monte Carlo with the Integrated Nested Laplace Approximation. Stat Comput 28, 1033–1051 (2018). https://doi.org/10.1007/s11222-017-9778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9778-y

Keywords

Navigation