Skip to main content
Log in

QuickMMCTest: quick multiple Monte Carlo testing

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Multiple hypothesis testing is widely used to evaluate scientific studies involving statistical tests. However, for many of these tests, p values are not available and are thus often approximated using Monte Carlo tests such as permutation tests or bootstrap tests. This article presents a simple algorithm based on Thompson Sampling to test multiple hypotheses. It works with arbitrary multiple testing procedures, in particular with step-up and step-down procedures. Its main feature is to sequentially allocate Monte Carlo effort, generating more Monte Carlo samples for tests whose decisions are so far less certain. A simulation study demonstrates that for a low computational effort, the new approach yields a higher power and a higher degree of reproducibility of its results than previously suggested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, S., and Goyal, N.: Analysis of Thompson Sampling for the Multi-armed Bandit Problem. JMLR: Workshop and Conference Proceedings of the 25th Annual Conference on Learning Theory, 23(39), 1–26 (2012)

  • Asomaning, N., Archer, K.: High-throughput dna methylation datasets for evaluating false discovery rate methodologies. Comput. Stat. Data Anal. 56, 1748–1756 (2012)

    Article  MathSciNet  Google Scholar 

  • Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  • Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., Clifford, P.: Sequential Monte Carlo p values. Biometrika 78(2), 301–304 (1991)

    Article  MathSciNet  Google Scholar 

  • Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3–62 (1936)

    MATH  Google Scholar 

  • Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  • Dazard, J.-E., Rao, S.: Joint adaptive mean variance regularization and variance stabilization of high dimensional data. Comput. Stat. Data Anal. 56, 2317–2333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Edgington, E., Onghena, P.: Randomization Tests, 4th edn. Chapman & Hall/CRC, Boca Raton (1997)

    MATH  Google Scholar 

  • Gandy, A., Hahn, G.: MMCTest—a safe algorithm for implementing multiple Monte Carlo tests. Scand. J. Stat. 41(4), 1083–1101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gleser, L.: Comment on ’Bootstrap Confidence Intervals’ by T. J. DiCiccio B. Efron. Stat. Sci. 11, 219–221 (1996)

    MathSciNet  Google Scholar 

  • Guo, W., Peddada, S.: Adaptive choice of the number of bootstrap samples in large scale multiple testing. Stat. Appl. Genet. Mol. Biol. 7(1), 1–16 (2008)

    MathSciNet  MATH  Google Scholar 

  • Gusenleitner, D., Howe, E., Bentink, S., Quackenbush, J., Culhane, A.: iBBiG: iterative binary bi-clustering of gene sets. Bioinformatics 28(19), 2484–2492 (2012)

    Article  Google Scholar 

  • Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75(4), 800–802 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  • Jiang, H., Salzman, J.: Statistical properties of an early stopping rule for resampling-based multiple testing. Biometrika 99(4), 973–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, G., Best, N., Hansell, A., Ahmed, I., Richardson, S.: BaySTDetect: detecting unusual temporal patterns in small area data via bayesian model choice. Biostatistics 13(4), 695–710 (2012)

    Article  Google Scholar 

  • Liu, J., Chen, R.: Sequential monte carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Huang, J., Ma, S., Wang, K.: Incorporating group correlations in genome-wide association studies using smoothed group Lasso. Biostatistics 14(2), 205–219 (2013)

    Google Scholar 

  • Lourenco, V., Pires, A.: M-regression, false discovery rates and outlier detection with application to genetic association studies. Comput. Stat. Data Anal. 78, 33–42 (2014)

    Article  MathSciNet  Google Scholar 

  • Manly, B.: Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edn. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  • Martínez-Camblor, P.: On correlated z-values distribution in hypothesis testing. Comput. Stat. Data Anal. 79, 30–43 (2014)

    Article  MathSciNet  Google Scholar 

  • Nusinow, D., Kiezun, A., O’Connell, D., Chick, J., Yue, Y., Maas, R., Gygi, S., Sunyaev, S.: Network-based inference from complex proteomic mixtures using SNIPE. Bioinformatics 28(23), 3115–3122 (2012)

    Article  Google Scholar 

  • Pekowska, A., Benoukraf, T., Ferrier, P., Spicuglia, S.: A unique h3k4me2 profile marks tissue-specific gene regulation. Genome Res. 20(11), 1493–1502 (2010)

    Article  Google Scholar 

  • Pounds, S., Cheng, C.: Robust estimation of the false discovery rate. Bioinformatics 22(16), 1979–1987 (2006)

  • Rahmatallah, Y., Emmert-Streib, F., Glazko, G.: Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics 28(23), 3073–3080 (2012)

    Article  Google Scholar 

  • Rom, D.: A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77(3), 663–665 (1990)

    Article  MathSciNet  Google Scholar 

  • Sandve, G., Ferkingstad, E., Nygård, S.: Sequential Monte Carlo multiple testing. Bioinformatics 27(23), 3235–3241 (2011)

    Article  Google Scholar 

  • Shaffer, J.: Modified sequentially rejective multiple test procedures. J. Am. Stat.Assoc. 81(395), 826–831 (1986)

    Article  MATH  Google Scholar 

  • Sidak, Z.: Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat.Assoc. 62(318), 626–633 (1967)

    MathSciNet  MATH  Google Scholar 

  • Simes, R.: An improved Bonferroni procedure for multiple tests of significance. Biometrika 73(3), 751–754 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Tamhane, A., Liu, L.: On weighted Hochberg procedures. Biometrika 95(2), 279–294 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson, W.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

    Article  MATH  Google Scholar 

  • Wu, H., Wang, C., Wu, Z.: A new shrinkage estimator for dispersion improves differential expression detection in rna-seq data. Biostatistics 14(2), 232–243 (2013)

    Article  Google Scholar 

  • Zhou, Y.-H., Barry, W., Wright, F.: Empirical pathway analysis, without permutation. Biostatistics 14(3), 573–585 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the two referees for their constructive comments on the manuscript. The second author was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hahn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 122 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandy, A., Hahn, G. QuickMMCTest: quick multiple Monte Carlo testing. Stat Comput 27, 823–832 (2017). https://doi.org/10.1007/s11222-016-9656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9656-z

Keywords

Navigation