Skip to main content
Log in

Fast approximate Bayesian computation for estimating parameters in differential equations

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Approximate Bayesian computation (ABC) using a sequential Monte Carlo method provides a comprehensive platform for parameter estimation, model selection and sensitivity analysis in differential equations. However, this method, like other Monte Carlo methods, incurs a significant computational cost as it requires explicit numerical integration of differential equations to carry out inference. In this paper we propose a novel method for circumventing the requirement of explicit integration by using derivatives of Gaussian processes to smooth the observations from which parameters are estimated. We evaluate our methods using synthetic data generated from model biological systems described by ordinary and delay differential equations. Upon comparing the performance of our method to existing ABC techniques, we demonstrate that it produces comparably reliable parameter estimates at a significantly reduced execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beaumont, M.A., Cornuet, J.M., Marin, J.M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96(4), 983–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Calderhead, B., Girolami, M., Lawrence, N.D.: Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. In: Proceedings of Advances in Neural Information Processing Systems 21, pp 217–224 (2008)

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B 68(3), 411–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Didelot, X., Everitt, R.G., Johansen, A.M., Lawson, D.J.: Likelihood-free estimation of model evidence. Bayesian Anal. 6(1), 49–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dondelinger, F., Filippone, M., Rogers, S., Husmeier, D.: ODE parameter inference using adaptive gradient matching with Gaussian processes. In: Proceedings of 16th International Conference on Artificial Intelligence and Statistics, pp 216–228 (2013)

  • Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67(1), 225–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Filippi, S., Barnes, C.P., Cornebise, J., Stumpf, M.P.: On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Stat. Appl. Genet. Mol. Biol. 12(1), 87–107 (2013)

    Article  MathSciNet  Google Scholar 

  • MacKay, D.J.C.: Introduction to Gaussian processes. NATO ASI Ser. F 168, 133–166 (1998)

    MATH  Google Scholar 

  • Monk, N.A.M.: Oscillatory expression of Hes1, p53, and NF-\(\kappa \)B driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003)

    Article  Google Scholar 

  • Murray, J.D.: Mathematical Biology: I. An Introduction. Springer, New York (2002)

    MATH  Google Scholar 

  • Neal, R.M.: Regression and classification using Gaussian process priors. Bayesian Stat. 6, 475–501 (1998)

    MATH  Google Scholar 

  • O’Hagan, A., Kingman, J.F.C.: Curve fitting and optimal design for prediction. J. R. Stat. Soc. Ser. B 40, 1–42 (1978)

  • Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc. Ser. B 69(5), 741–796 (2007)

    Article  MathSciNet  Google Scholar 

  • Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 9999, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  • Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  • Ruttor, A., Batz, P., Opper, M.: Approximate Gaussian process inference for the drift of stochastic differential equations. In: Proceedings of Advances in Neural Information Processing Systems 26, pp 2040–2048 (2013)

  • Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl Acad. Sci. U.S.A. 104(6), 1760–1765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Sisson, S.A., Fan, Y., Tanaka, M.M.: Correction for Sisson sequential Monte Carlo without likelihoods. Proc. Natl Acad. Sci. U.S.A. 106(39), 16,889 (2009)

    Google Scholar 

  • Solak, E., Murray-Smith, R., Leithead, W., Rasmussen, C., Leith, D.: Derivative observations in Gaussian process models of dynamic systems. In: Proceedings of Advances in Neural Information Processing Systems 15, pp 1033–1040 (2002)

  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  • Varah, J.M.: A spline least squares method for numerical parameter estimation in differential equations. SIAM J. Sci. Stat. Comput. 3(1), 28–46 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Vyshemirsky, V., Girolami, M.A.: Bayesian ranking of biochemical system models. Bioinformatics 24(6), 833–839 (2008)

    Article  Google Scholar 

  • Wang, Y., Barber, D.: Gaussian processes for Bayesian estimation in ordinary differential equations. In: Proceedings of 31st International Conference on Machine Learning, pp 1485–1493 (2014)

Download references

Acknowledgments

We want to thank the anonymous reviewers for their valuable comments. This work was supported by project PLants Employed As SEnsor Devices (PLEASED), EC grant agreement number 296582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanmitra Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Dasmahapatra, S. & Maharatna, K. Fast approximate Bayesian computation for estimating parameters in differential equations. Stat Comput 27, 19–38 (2017). https://doi.org/10.1007/s11222-016-9643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9643-4

Keywords

Navigation