Skip to main content
Log in

Self-healing umbrella sampling: convergence and efficiency

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The Self-Healing Umbrella Sampling (SHUS) algorithm is an adaptive biasing algorithm which has been proposed in Marsili et al. (J Phys Chem B 110(29):14011–14013, 2006) in order to efficiently sample a multimodal probability measure. We show that this method can be seen as a variant of the well-known Wang–Landau algorithm Wang and Landau (Phys Rev E 64:056101, 2001a; Phys Rev Lett 86(10):2050–2053, 2001b). Adapting results on the convergence of the Wang-Landau algorithm obtained in Fort et al. (Math Comput 84(295):2297–2327, 2014a), we prove the convergence of the SHUS algorithm. We also compare the two methods in terms of efficiency. We finally propose a modification of the SHUS algorithm in order to increase its efficiency, and exhibit some similarities of SHUS with the well-tempered metadynamics method Barducci et al. (Phys Rev Lett 100:020,603, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. With the notation of the metadynamics works, what we call here a is denoted \(\varDelta T/(T + \varDelta T)\) where T is the temperature and \(\varDelta T > 0\) is a parameter. The limiting regime \(a = 1\) is recovered in the limit \(\varDelta T \rightarrow +\infty \), which corresponds to the standard metadynamics (Laio and Parrinello 2002; Bussi et al. 2006.

References

  • Andrieu, C., Moulines, E., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44, 283–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020,603 (2008)

    Article  Google Scholar 

  • Bussi, G., Laio, A., Parrinello, M.: Equilibrium free energies from nonequilibrium metadynamics. Phys. Rev. Lett. 96, 090,601 (2006)

    Article  Google Scholar 

  • Chopin, N., Lelièvre, T., Stoltz, G.: Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors. Stat. Comput. 22(4), 897–916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dama, J., Parrinello, M., Voth, G.: Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112, 240,602(1-6) (2014)

    Article  Google Scholar 

  • Dickson, B., Legoll, F., Lelièvre, T., Stoltz, G., Fleurat-Lessard, P.: Free energy calculations: an efficient adaptive biasing potential method. J. Phys. Chem. B 114, 5823–5830 (2010)

    Article  Google Scholar 

  • Fort, G.: Central limit theorems for stochastic approximation with controlled Markov chain dynamics. ESAIM: Probab. Stat. 19, 60–80 (2015)

  • Fort, G., Jourdain, B., Kuhn, E., Lelièvre, T., Stoltz, G.: Convergence of the Wang-Landau. Math. Comput. 84(295), 2297–2327 (2014a)

  • Fort, G., Jourdain, B., Kuhn, E., Lelièvre, T., Stoltz, G.: Efficiency of the Wang-Landau algorithm: a simple test case. Appl. Math. Res. Express 2014(2), 275–311 (2014b)

  • Fort, G., Moulines, E., Priouret, P.: Convergence of adaptive and interacting Markov chain Monte Carlo algorithms. Ann. Stat. 39(6), 3262–3289 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., Heyde, P.: Martingale Limit Theory and its Application. Academic Press, New York (1980)

    MATH  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacob, P.E., Ryder, R.J.: The Wang-Landau algorithm reaches the flat histogram criterion in finite time. Ann. Appl. Probab. 24(1), 34–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562–12566 (2002)

    Article  Google Scholar 

  • Lelièvre, T.: Two mathematical tools to analyze metastable stochastic processes. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications 2011, pp. 791–810. Springer, Berlin (2013)

    Chapter  Google Scholar 

  • Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  • Marinari, E., Parisi, G.: Simulated tempering—a new Monte-Carlo scheme. Europhys. Lett. 19(6), 451–458 (1992)

    Article  Google Scholar 

  • Marsili, S., Barducci, A., Chelli, R., Procacci, P., Schettino, V.: Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. J. Phys. Chem. B 110(29), 14011–14013 (2006)

  • Mengersen, K., Robert, C.: IID sampling with self-avoiding particle filters: the pinball sampler. In: Bernardo, J., David, A., Berger, J., West, M. (eds.) Bayesian Statistics 7 (2003)

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953)

    Article  Google Scholar 

  • Park, S., Sener, M.K., Lu, D., Schulten, K.: Reaction paths based on mean first-passage times. J. Chem. Phys. 119(3), 1313–1319 (2003)

    Article  Google Scholar 

  • Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, F., Landau, D.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001a)

  • Wang, F.G., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001b)

Download references

Acknowledgments

This work is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement number 614492 and by the French National Research Agency under the grants ANR-12-BS01-0019 (STAB) and ANR-14-CE23-0012 (COSMOS). We also benefited from the scientific environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gersende Fort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fort, G., Jourdain, B., Lelièvre, T. et al. Self-healing umbrella sampling: convergence and efficiency. Stat Comput 27, 147–168 (2017). https://doi.org/10.1007/s11222-015-9613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-015-9613-2

Keywords

Navigation