Skip to main content
Log in

Bayesian analysis of some models that use the asymmetric exponential power distribution

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The asymmetric exponential power (AEP) family includes the symmetric exponential power distribution as a particular case. It provides flexible distributions with lighter and heavier tails compared to the normal one. The distributions of this family can successfully handle both symmetry/asymmetry and light/heavy tails simultaneously. Even more, the distributions can fit each tail separately. This provides a great flexibility when fitting experimental data. The idea of using a scale mixture of uniform representation of the AEP distribution is exploited to derive efficient Gibbs sampling algorithms in three different Bayesian contexts. Firstly, a posterior exploration is performed, where the AEP distribution is considered for the likelihood model. Secondly, a linear regression model, that uses the AEP distribution for the error variable, is developed. And finally, a binary regression model is analyzed, by using the inverse of the AEP cumulative distribution function as the link function. These three models have been built in such a way that they share some full conditional distributions to sample from their respective posterior distributions. The theoretical results are illustrated by comparing with other competing models using some previously published datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adcock, C.J.: Asset pricing and portfolio selection based on the multivariate extended skew-Student-\(t\) distribution. Ann. Oper. Res. 176, 221–234 (2010)

    Google Scholar 

  • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) Proceedings of 2nd International Symposium on Information Theory, pp. 267–281. Academia Kiado, Budapest, Hungary (1973)

    Google Scholar 

  • Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Aranda-Ordaz, F.J.: On two families of transformations to additivity for binary response data. Biometrika 68(2), 357–363 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Arellano-Valle, R.B., Bolfarine, H., Lachos, V.H.: Bayesian inference for skew-normal linear mixed model. J. Appl. Stat. 34, 663–682 (2007)

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle, R.B., Castro, L.M., Genton, M.G., Gómez, H.W.: Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis. Bayesian Anal. 3(3), 513–540 (2008)

    MathSciNet  Google Scholar 

  • Arellano-Valle, R.B., Galea-Rojas, M., Iglesias, P.: Bayesian analysis in elliptical linear regression models. J. Chil. Stat. Soc. 16–17, 59–104 (1999–2000).

    Google Scholar 

  • Arellano-Valle, R.B., Genton, M.G.: On fundamental skew distributions. J. Multivar. Anal. 96, 93–116 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Arellano-Valle, R.B., Gómez, H.W., Quintana, F.A.: Statistical inference for a general class of asymmetric distributions. J. Stat. Plan. Inference 128, 427–443 (2005)

    Article  MATH  Google Scholar 

  • Arnold, B.C., Beaver, R.J.: Some skewed multivariate distributions. Am. J. Math. Manag. Sci. 20(1–2), 27–38 (2000)

    MATH  MathSciNet  Google Scholar 

  • Ayebo, A., Kozubowski, T.J.: An asymmetric generalization of Gaussian and Laplace laws. J. Probab. Stat. Sci. 1(2), 187–210 (2004)

    Google Scholar 

  • Azzalini, A.: A class of distribution which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985)

    MATH  MathSciNet  Google Scholar 

  • Azzalini, A.: Further results on a class of distributions which includes the normal ones. Statistica 46, 199–208 (1986)

    MATH  MathSciNet  Google Scholar 

  • Azzalini, A., Dalla-Valle, A.: The multivariate skew-normal distribution. Biometrika 83(4), 715–726 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Basu, S., Mukhopadhyay, S.: Bayesian analysis of binary regression using symmetric and asymmetric links. Sankhya Indian J. Stat. 62, 372–387 (2000)

    MATH  MathSciNet  Google Scholar 

  • Bazán, J.L., Bolfarine, H., Branco, M.D.: A framework for skew-probit links in binary regression. Commun. Stat. Theory Methods 39, 678–697 (2010)

    Article  MATH  Google Scholar 

  • Blattberg, R.C., Gonedes, N.J.: A comparison of the stable and student distributions as statistical models for stock prices. J. Bus. 47(2), 244–280 (1974)

    Article  Google Scholar 

  • Bliss, C.: The calculation of the dosage-mortality curve. Ann. Appl. Biol. 22(1), 134–167 (1935)

    Article  Google Scholar 

  • Bottazzi, G., Secchi, A.: A new class of asymmetric exponential power densities with applications to economics and finance. Ind. Corp. Change 20(4), 991–1030 (2011)

    Article  Google Scholar 

  • Box, G.E.P.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological) 26(2), 211–252 (1964)

    MATH  MathSciNet  Google Scholar 

  • Box, G.E.P., Tiao, G.C.: A further look at robustness via Bayes’s theorem. Biometrika 49(3/4), 419–432 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  • Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, Massachusetts (1973)

    MATH  Google Scholar 

  • Brooks, S., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7(4), 434–455 (1998)

    MathSciNet  Google Scholar 

  • Chen, M.H., Dey, D.K.: Bayesian modeling of correlated binary responses via scale mixture of multivariate normal link functions. Sankhya Indian J. Stat. Ser. A 60, 322–343 (1998)

    MATH  MathSciNet  Google Scholar 

  • Chen, M.H., Dey, D.K., Shao, Q.M.: A new skewed link model for dichotomous quantal response data. J. Am. Stat. Assoc. 94(448), 1172–1186 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  • Collett, D.: Modelling Binary Data. Chapman & Hall, London (1991)

    Google Scholar 

  • Cook, R.D., Weisberg, S.: An Introduction to Regression Graphics. Wiley, New York (1994)

    MATH  Google Scholar 

  • Cox, D.R.: The Analysis of Binary Data. Methuen, London (1971)

    Google Scholar 

  • Curtis, S.M., Ghosh, S.K.: A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression. J. Stat. Theory Pract. 5(4), 715–735 (2011)

    Article  MathSciNet  Google Scholar 

  • Czado, C.: Parametric link modification of both tails in binary regression. Stat. Pap. 35, 189–201 (1994)

    Article  MATH  Google Scholar 

  • Czado, C., Santner, T.J.: The effect of link misspecification on binary regression inference. J. Stat. Plan. Inference 33(2), 213–231 (1992)

    Google Scholar 

  • Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B 61(2), 331–344 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Delicado, P., Goria, M.N.: A small sample comparison of maximum likelihood, moments and \(l\)-moments methods for the asymmetric exponential power distribution. Comput. Stat. Data Anal. 52, 1661–1673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • DiCiccio, T.J., Monti, A.C.: Inferential aspects of the skew exponential power distribution. J. Am. Stat. Assoc. 99(466), 439–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Fernández, C., Osiewalski, J., Steel, M.F.J.: Modeling and inference with v-spherical distributions. J. Am. Stat. Assoc. 90(432), 1331–1340 (1995)

    MATH  Google Scholar 

  • Fernández, C., Steel, M.F.J.: On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 93(441), 359–371 (1998)

    MATH  Google Scholar 

  • Fernández, C., Steel, M.F.J.: Multivariate Student t regression models: pitfalls and inference. Biometrika 86, 153–167 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Fernández, C., Steel, M.F.J.: Bayesian regression analysis with scale mixtures of normals. Econom. Theory 16, 80–101 (2000).

    Google Scholar 

  • Ferreira, J.T.A.S., Steel, M.F.J.: A new class of skewed multivariate distributions with applications to regression analysis. Stat. Sin. 17, 505–529 (2007)

    MATH  MathSciNet  Google Scholar 

  • Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472 (1992)

    Article  Google Scholar 

  • Genton, M.G.: Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  • Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall, Boca Raton (1996)

  • Gómez, E., Gómez-Villegas, M.A., Marín, J.M.: A multivariate generalization of the power exponential family of distributions. Commun. Stat. Theory Methods 27(3), 589–600 (1998)

    Article  MATH  Google Scholar 

  • Heidelberger, P., Welch, P.: Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983)

    Article  MATH  Google Scholar 

  • Huber, P.J.: Robust Statistics. John Wiley & Sons, New York (1981)

  • Jones, M.C.: In discussion of R. A. Rigby and D. M. Stasinopoulos (2005) Generalized additive models for location, scale and shape. Appl. Stat. 54(3), 507–554 (2005)

    Google Scholar 

  • Kacperczyk, M., Damien, P., Walker, S.G.: A new class of Bayesian semi-parametric models with applications to option pricing. Quant. Financ. 13(6), 967–980 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, S., Chen, M.H., Dey, D.K.: Flexible generalized \(t\)-link models for binary response data. Biometrika 95(1), 93–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Komunjer, I.: Asymmetric power distribution: theory and applications to risk measurement. J. Appl. Econom. 22(5), 891–921 (2007)

    Article  MathSciNet  Google Scholar 

  • Lange, K.L., Little, R.J.A., Taylor, J.M.G.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989)

    MathSciNet  Google Scholar 

  • Ma, Y., Genton, M., Davidian, M.: Linear mixed effects models with flexible generalized skew-elliptical random effects. In: Genton, M.G. (ed.) Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, pp. 339–358. Chapman and Hall/CRC, Boca Raton/Florida (2004)

    Google Scholar 

  • MacEachern, S.N., Berliner, L.M.: Subsampling the Gibbs sampler. Am. Stat. 48(3), 188–190 (1994)

    Google Scholar 

  • Martín, J., Pérez, C.J.: Bayesian analysis of a generalized lognormal distribution. Comput. Stat. Data Anal. 53, 1377–1387 (2009)

    Article  MATH  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized linear models, 2nd edn. Chapman & Hall, London (1989).

  • Monti, A.C.: A note on the estimation of the skew normal and the skew exponential power distributions. METRON Int. J. Stat. LX I (2), 205–219 (2003)

    MathSciNet  Google Scholar 

  • Naranjo, L., Pérez, C. J., Martín, J.: Bayesian analysis of a skewed exponential power distribution. In: Proceedings of COMPSTAT 2012, 20th International Conference on Computational Statistics, pp. 641–652 (2012).

  • Qin, Z.: Uniform scale mixture models with applications to Bayesian inference. Ph.D. thesis, University of Michigan (2000).

  • Raftery, A.E., Lewis, S.M.: How many iterations in the Gibbs sampler? In: Bernardo, J.M., Smith, A.F.M., Dawid, A.P., Berger, J.O. (eds.) Bayesian Statistics 4. Oxford University Press, New York (1992)

    Google Scholar 

  • Sahu, S.K., Dey, D.K., Branco, M.D.: A new class of multivariate skew distributions with applications to Bayesian regression models. Can. J. Stat. 31(2), 129–150 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  • Smith, B.J.: boa: an R package for MCMC output convergence assessment and posterior inference. J. Stat. Softw. 21(11), 1–37 (2007)

    Google Scholar 

  • Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639 (2002)

    Google Scholar 

  • Stukel, T.A.: Generalized logistic models. J. Am. Stat. Assoc. 83, 426–431 (1988)

    Article  MathSciNet  Google Scholar 

  • Subbotin, M.: On the law of frecuency errors. Mathematicheskii Sbornik 31, 296–301 (1923)

    Google Scholar 

  • Theodossiou, P.: Skewed generalized error distribution of financial assets and option pricing. SSRN Working Paper (2000).

  • Tiku, M.L., Tan, W.Y., Balakrishnan, N.: Robust Inference. Marcel Dekker, New York (1986)

    MATH  Google Scholar 

  • Vianelli, S.: La misura della variabilità condizionata in uno schema generale delle curve normali di frequenza. Statistica 23, 447–474 (1963)

    Google Scholar 

  • Walker, S.G.: The uniform power distribution. J. Appl. Stat. 26(4), 509–517 (1999)

    Article  MATH  Google Scholar 

  • Walker, S.G., Gutiérrez-Peña, E.: Robustifying Bayesian procedures. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6, pp. 685–710. Oxford University Press, New York (1999)

    Google Scholar 

  • Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate Student \(t\) error terms. J. Am. Stat. Assoc. 71, 400–405 (1976)

    MATH  MathSciNet  Google Scholar 

  • Zhu, D., Galbraith, J.W.: A generalized asymmetric Student \(t\) distribution with application to financial econometrics. J. Econom. 157(2), 297–305 (2010)

    Article  MathSciNet  Google Scholar 

  • Zhu, D., Zinde-Walsh, V.: Properties and estimation of asymmetric exponential power distribution. J. Econom. 148, 86–99 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and two anonymous referees for comments and suggestions which have improved the content and readability of the paper. This research has been partially funded by Ministerio de Economía y Competitividad, Spain (Project MTM2011-28983-C03-02), Gobierno de Extremadura, Spain (Project GRU10110), and European Union (European Regional Development Funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Naranjo.

Appendices

Appendix 1. Proofs

Proposition 1.

Proof

It is enough to show that

$$\begin{aligned}&\int f(y|u_1)f(u_1)\mathrm {d}u_1 \\&\quad = \int \tfrac{1}{\alpha \sigma }\exp (-u_1) I\Big [\mu -\tfrac{\alpha \sigma }{\varGamma (1+1/\theta _1)}u_1^{1/\theta _1}<y\le \mu \Big ]\\&\quad \qquad I[u_1>0] \mathrm {d}u_1\\&\quad = \int \tfrac{1}{\alpha \sigma }\exp (-u_1) I\Big [u_1>\big |\tfrac{y-\mu }{\alpha \sigma /\varGamma (1+1/\theta _1)}\big |^{\theta _1}\Big ] I[y\le \mu ] \mathrm {d}u_1\\&\quad =\tfrac{1}{\alpha \sigma } \exp \Big (-\big |\tfrac{y-\mu }{\alpha \sigma /\varGamma (1+1/\theta _1)}\big |^{\theta _1}\Big ) I[y\le \mu ],\\&\int f(y|u_2)f(u_2)\mathrm {d}u_2 \\&\quad = \int \tfrac{1}{(1-\alpha )\sigma }\exp (-u_2) I\Big [\mu <y<\mu +\tfrac{(1-\alpha )\sigma }{\varGamma (1+1/\theta _2)}u_2^{1/\theta _2}\Big ]\\&\quad \qquad I[u_2>0] \mathrm {d}u_2\\&\quad = \int \tfrac{1}{(1-\alpha )\sigma }\exp (-u_2) I\Big [u_2>\big |\tfrac{y-\mu }{(1-\alpha )\sigma /\varGamma (1+1/\theta _2)}\big |^{\theta _2}\Big ]\\&\quad \qquad I[y>\mu ] \mathrm {d}u_2\\&\quad = \tfrac{1}{(1-\alpha )\sigma } \exp \Big (-\big |\tfrac{y-\mu }{(1-\alpha )\sigma /\varGamma (1+1/\theta _2)}\big |^{\theta _2}\Big ) I[y>\mu ], \end{aligned}$$

and so

$$\begin{aligned} f(y)&= \alpha \int f(y|u_1)f(u_1)\mathrm {d}u_1\\&+ (1-\alpha )\int f(y|u_2)f(u_2)\mathrm {d}u_2 \end{aligned}$$

is the pdf of the distribution \(\mathrm {AEP}(\mu ,\sigma ,\alpha ,\theta _1,\theta _2)\).

Appendix 2. Specific full conditional distributions

Equation (3):

If \(\pi (\mu )\propto 1\) this distribution becomes an uniform

$$\begin{aligned}{}[\mu | \mathbf {y},\mathbf {u}_1,\mathbf {u}_2 , \sigma ,\alpha , \theta _1,\theta _2] \sim \mathrm {U}\big ( \underline{\mu }\,,\,\overline{\mu } \big ). \end{aligned}$$

If \(\pi (\mu )\) is the pdf of a normal distribution, \(\mathrm {N}(m_{\mu },s^2_{\mu }),\) the full conditional distribution becomes a truncated normal

$$\begin{aligned}{}[\mu | \mathbf {y},\mathbf {u}_1,\mathbf {u}_2 , \sigma ,\alpha , \theta _1,\theta _2] \sim \mathrm {N}(m_{\mu },s^2_{\mu })I\big [ \underline{\mu } < \mu < \overline{\mu } \big ]. \end{aligned}$$

Equation (4):

If \(\pi (\sigma )\propto 1\), the full conditional distribution of \(\sigma \) is

$$\begin{aligned}&[\sigma | \mathbf {y}, \mathbf {u}_1,\mathbf {u}_2, \mu , \alpha , \theta _1,\theta _2]\\&\quad \sim \mathrm {ParetoI}\big ( \text {scale}=\underline{\sigma }\,,\,\text {shape}=n-1\big ). \end{aligned}$$

If \(\pi (\sigma )\propto 1/\sigma ^{m_{\sigma }}\), the full conditional distribution of \(\sigma \) is

$$\begin{aligned}&[\sigma |\mathbf {y}, \mathbf {u}_1,\mathbf {u}_2, \mu , \alpha , \theta _1,\theta _2]\\&\quad \sim \mathrm {ParetoI}\big ( \text {scale}=\underline{\sigma }\,,\,\text {shape}=n-1+m_{\sigma }\big ). \end{aligned}$$

If \(\pi (\sigma )\) is the pdf of an inverse-gamma distribution, \(\mathrm {InvGamma}(a_{\sigma },b_{\sigma })\), the full conditional distribution of \(\sigma \) is

$$\begin{aligned}&[\sigma | \mathbf {y}, \mathbf {u}_1,\mathbf {u}_2, \mu , \alpha , \theta _1,\theta _2]\\&\quad \sim \mathrm {InvGamma} \big (\text {shape}\!=\!n-1\!+\!a_{\sigma }, \text { scale}=b_{\sigma }\big ) I\big [\sigma \!>\! \underline{\sigma }\big ]. \end{aligned}$$

Equation (5):

If \(\pi (\alpha )\propto 1\), the full conditional distribution of \(\alpha \) is

$$\begin{aligned}{}[\alpha | \mathbf {y}, \mathbf {u}_1,\mathbf {u}_2, \mu , \sigma , \theta _1,\theta _2] \sim \mathrm {U}\big (\underline{\alpha }\,,\, \overline{\alpha } \big ). \end{aligned}$$

If \(\pi (\alpha )\) is the pdf of a beta distribution, \(\mathrm {Beta}(a_{\alpha },b_{\alpha })\), the full conditional distribution of \(\alpha \) is

$$\begin{aligned}{}[\alpha | \mathbf {y}, \mathbf {u}_1,\mathbf {u}_2, \mu , \sigma , \theta _1,\theta _2] \sim \mathrm {Beta}(a_{\alpha }\ ,\ b_{\alpha }) I\big [\underline{\alpha } < \alpha < \overline{\alpha } \big ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naranjo, L., Pérez, C.J. & Martín, J. Bayesian analysis of some models that use the asymmetric exponential power distribution. Stat Comput 25, 497–514 (2015). https://doi.org/10.1007/s11222-014-9449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9449-1

Keywords

Navigation