Skip to main content
Log in

Spectral estimation for locally stationary time series with missing observations

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Time series arising in practice often have an inherently irregular sampling structure or missing values, that can arise for example due to a faulty measuring device or complex time-dependent nature. Spectral decomposition of time series is a traditionally useful tool for data variability analysis. However, existing methods for spectral estimation often assume a regularly-sampled time series, or require modifications to cope with irregular or ‘gappy’ data. Additionally, many techniques also assume that the time series are stationary, which in the majority of cases is demonstrably not appropriate. This article addresses the topic of spectral estimation of a non-stationary time series sampled with missing data. The time series is modelled as a locally stationary wavelet process in the sense introduced by Nason et al. (J. R. Stat. Soc. B 62(2):271–292, 2000) and its realization is assumed to feature missing observations. Our work proposes an estimator (the periodogram) for the process wavelet spectrum, which copes with the missing data whilst relaxing the strong assumption of stationarity. At the centre of our construction are second generation wavelets built by means of the lifting scheme (Sweldens, Wavelet Applications in Signal and Image Processing III, Proc. SPIE, vol. 2569, pp. 68–79, 1995), designed to cope with irregular data. We investigate the theoretical properties of our proposed periodogram, and show that it can be smoothed to produce a bias-corrected spectral estimate by adopting a penalized least squares criterion. We demonstrate our method with real data and simulated examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, A.L.: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978)

    Article  Google Scholar 

  • Bos, R., de Waele, S., Broersen, P.M.T.: Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Trans. Instrum. Meas. 51(6), 1289–1294 (2002)

    Article  Google Scholar 

  • Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Broersen, P.M.T.: Automatic spectral analysis with missing data. Digit. Signal Process. 16(6), 754–766 (2006)

    Article  MathSciNet  Google Scholar 

  • Broersen, P.M.T.: Time series models for spectral analysis of irregular data far beyond the mean data rate. Meas. Sci. Technol. 19(1), 015103 (2008). http://stacks.iop.org/0957-0233/19/i=1/a=015103

    Article  Google Scholar 

  • Broersen, P.M.T., de Waele, S., Bos, R.: Autoregressive spectral analysis when observations are missing. Automatica 40(9), 1495–1504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Cazelles, B., Chavez, M., Magny, G.C., Guégan, J., Hales, S.: Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4(15), 625–636 (2007)

    Article  Google Scholar 

  • Chatfield, C.: The Analysis of Time Series: An Introduction. Chapman & Hall/CRC Press, London/Boca Raton (2004)

    MATH  Google Scholar 

  • Clinger, W., Van Ness, J.W.: On unequally spaced time points in time series. Ann. Stat. 4(4), 736–745 (1976)

    Article  MATH  Google Scholar 

  • Cranstoun, S.D., Ombao, H.C., von Sachs, R., Guo, W., Litt, B.: Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method. IEEE Trans. Biomed. Eng. 49(9), 988–996 (2002)

    Article  Google Scholar 

  • Crucifix, M.: Global change: climate’s astronomical sensors. Nature 456(7218), 47–48 (2008)

    Article  Google Scholar 

  • Crucifix, M., Rougier, J.: On the use of simple dynamical systems for climate predictions. Euro Phys. J. 174(1), 11–31 (2009)

    Google Scholar 

  • Crucifix, M., Loutre, M.F., Berger, A.: The climate response to the astronomical forcing. In: Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M. (eds.) Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol. 23, pp. 213–226. Springer, New York (2007)

    Chapter  Google Scholar 

  • Dahlhaus, R.: Fitting time series models to nonstationary processes. Ann. Stat. 25(1), 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus, R., Subba Rao, S.: Statistical inference for time-varying ARCH processes. Ann. Stat. 34(3), 1075–1114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus, R., Subba Rao, S.: A recursive online algorithm for the estimation of time-varying ARCH parameters. Bernoulli 13(2), 389–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dilmaghani, S., Henry, I.C., Soonthornnonda, P., Christensen, E.R., Henry, R.C.: Harmonic analysis of environmental time series with missing data or irregular sample spacing. Environ. Sci. Technol. 41(20), 7030–7038 (2007)

    Article  Google Scholar 

  • Engle, R.F.: The econometrics of ultra-high-frequency data. Econometrica 68(1), 1–22 (2000)

    Article  MATH  Google Scholar 

  • Fryźlewicz, P.: Wavelet techniques for time series and Poisson data. Ph.D. thesis, University of Bristol, UK (2003)

  • Fryźlewicz, P., Nason, G.P.: Haar-Fisz estimation of evolutionary wavelet spectra. J. R. Stat. Soc. B 68, 611–634 (2006)

    Article  MATH  Google Scholar 

  • Fryźlewicz, P., Sapatinas, T., Rao, S.: A Haar-Fisz technique for locally stationary volatility estimation. Biometrika 93(3), 687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., Fisher, N.I., Hoffmann, B.: On the nonparametric estimation of covariance functions. Ann. Stat. 22(4), 2115–2134 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen, M., Nason, G.P., Silverman, B.W.: Scattered data smoothing by empirical Bayesian shrinkage of second generation wavelet coefficients. In: Unser, M., Aldroubi, A. (eds.) Wavelet Applications in Signal and Image Processing IX. SPIE, vol. 4478, pp. 87–97 (2001)

    Google Scholar 

  • Jansen, M., Nason, G.P., Silverman, B.W.: Multidimensional nonparametric regression using lifting. Tech. Rep. 04:17, Statistics Group, Department of Mathematics, University of Bristol, UK (2004)

  • Jansen, M., Nason, G.P., Silverman, B.W.: Multiscale methods for data on graphs and irregular multidimensional situations. J. R. Stat. B 71(1), 97–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, R.H.: Spectral analysis with regularly missed observations. Ann. Math. Stat. 33(2), 455–461 (1962)

    Article  MATH  Google Scholar 

  • Knight, M.I., Nason, G.P.: Improving prediction of hydrophobic segments along a transmembrane protein sequence using adaptive multiscale lifting. SIAM J. Multiscale Model. Simul. 5, 115–129 (2006)

    Article  MathSciNet  Google Scholar 

  • Knight, M.I., Nason, G.P.: A nondecimated lifting transform. Stat. Comput. 19(1), 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  • Knight, M.I., Nunes, M.A.: nlt: a nondecimated lifting scheme algorithm. R package version 2.1-1 (2010)

  • Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., et al.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193), 379–382 (2008)

    Article  Google Scholar 

  • Mikosch, T., Starica, C.: Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Stat. 86(1), 378–390 (2004)

    Article  MathSciNet  Google Scholar 

  • Mondal, D., Percival, D.B.: Wavelet variance analysis for gappy time series. Ann. Inst. Stat. Math. 62(5), 943–966 (2010)

    Article  MathSciNet  Google Scholar 

  • Nason, G.P.: Wavelet Methods in Statistics with R. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Nason, G.P., Von Sachs, R.: Wavelets in time-series analysis. Philos. Trans. R. Soc. Lond. A 357(1760), 2511–2526 (1999)

    Article  MATH  Google Scholar 

  • Nason, G.P., Von Sachs, R., Kroisandt, G.: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Stat. Soc. B 62(2), 271–292 (2000)

    Article  Google Scholar 

  • Nason, G.P., Sapatinas, T., Sawczenko, A.: Wavelet packet modelling of infant sleep state using heart rate data. Sankhyā B 63(2), 199–217 (2001)

    MathSciNet  MATH  Google Scholar 

  • Nason, G.P., Kovac, A., Maechler, M.: Wavethresh: Software to perform wavelet statistics and transforms. R package version 4.2-1 (2008)

  • Nunes, M.A., Knight, M.I.: Adlift: an adaptive lifting scheme algorithm. R package version 1.2-3

  • Nunes, M.A., Knight, M.I., Nason, G.P.: Adaptive lifting for nonparametric regression. Stat. Comput. 16(2), 143–159 (2006)

    Article  MathSciNet  Google Scholar 

  • Ombao, H., Raz, J., Von Sachs, R., Guo, W.: The SLEX model of a non-stationary random process. Ann. Inst. Stat. Math. 54(1), 171–200 (2002)

    Article  MATH  Google Scholar 

  • Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  • Sanderson, J.: Wavelet methods for time series with bivariate observations and irregular sampling grids. Ph.D. thesis, University of Bristol, UK (2010)

  • Stoica, P., Sandgren, N.: Spectral analysis of irregularly-sampled data: Paralleling the regularly-sampled data approaches. Digit. Signal Process. 16(6), 712–734 (2006)

    Article  Google Scholar 

  • Sweldens, W.: The lifting scheme: a new philosophy in biorthogonal wavelet construction. In: Laine, A., Unser, M. (eds.) Wavelet Applications in Signal and Image Processing III. Proc. SPIE, vol. 2569, pp. 68–79 (1995)

    Google Scholar 

  • Van Bellegem, S., Von Sachs, R.: Locally adaptive estimation of evolutionary wavelet spectra. Ann. Stat. 36, 1879–1924 (2008)

    Article  MATH  Google Scholar 

  • Witt, A., Schumann, A.Y.: Holocene climate variability on millennial scales recorded in Greenland ice cores. Nonlinear Process. Geophys. 12(3), 345–352 (2005)

    Article  Google Scholar 

  • Wolff, E.W.: Understanding the past-climate history from Antarctica. Antarct. Sci. 17(04), 487–495 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, M.I., Nunes, M.A. & Nason, G.P. Spectral estimation for locally stationary time series with missing observations. Stat Comput 22, 877–895 (2012). https://doi.org/10.1007/s11222-011-9256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9256-x

Keywords

Navigation