Skip to main content
Log in

On directional Metropolis–Hastings algorithms

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

New Metropolis–Hastings algorithms using directional updates are introduced in this paper. Each iteration of a directional Metropolis–Hastings algorithm consists of three steps (i) generate a line by sampling an auxiliary variable, (ii) propose a new state along the line, and (iii) accept/reject according to the Metropolis–Hastings acceptance probability. We consider two classes of directional updates. The first uses a point in \({\cal R}\) n as auxiliary variable, the second an auxiliary direction vector. The proposed algorithms generalize previous directional updating schemes since we allow the distribution of the auxiliary variable to depend on properties of the target at the current state. By letting the proposal distribution along the line depend on the density of the auxiliary variable, we identify proposal mechanisms that give unit acceptance rate. When we use direction vector as auxiliary variable, we get the advantageous effect of large moves in the Markov chain and hence the autocorrelation length of the samples is small. We apply the directional Metropolis–Hastings algorithms to a Gaussian example, a mixture of Gaussian densities, and a Bayesian model for seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Buland A., Kolbjørnsen O. and Omre H. 2003. Rapid spatially coupled AVO inversion in the Fourier domain. Geophysics 68: 824–836.

    Article  Google Scholar 

  • Buland A. and Omre H. 2003. Bayesian linearized AVO inversion. Geophysics 68: 185–198.

    Article  Google Scholar 

  • Chan G. and Wood A.T.A. 1997. An algorithm for simulating stationary Gaussian random fields. Applied Statistics 46: 171–181.

    MATH  Google Scholar 

  • Chen M. and Schmeiser B. 1993. Performance of the Gibbs, Hit-and-Run and Metropolis Samplers. Journal of Computational and Graphical Statistics 2: 251–272.

    Article  MathSciNet  Google Scholar 

  • Chib S. and Greenberg E. 1995. Understanding the Metropolis–Hastings algorithm. American Statistician 90: 1313–1321.

    MATH  Google Scholar 

  • Chib S. and Greenberg E. 1998. Analysis of multivariate probit models. Biometrika 85: 347–361.

    Article  MATH  Google Scholar 

  • Erland S. 2003. On Eigen-Decompositions and Adaptivity of Markov Chains. PhD Thesis 2003:102. Norwegian University of Science and Technology.

  • Geyer C.J. 1992. Practical Markov chain Monte Carlo. Statistical Science 7: 473–483.

    Google Scholar 

  • Gilks W.R. and Wild P. 1992. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41: 337–348.

    Article  MATH  Google Scholar 

  • Gilks W.R., Roberts G.O., and George E.I. 1994. Adaptive direction sampling. The Statistician 43: 179–189.

    Article  Google Scholar 

  • Goodman J. and Sokal A.D. 1989. Multigrid Monte Carlo method. Conceptual foundations. Physical Review D 40: 2035–2072.

    Google Scholar 

  • Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Gustafson P., Macnab Y.C., and Wen S. 2004. On the value of derivative evaluations and random walk suppression in Markov Chain Monte Carlo algorithms. Statistics and Computing 14: 23–38.

    Article  MathSciNet  Google Scholar 

  • Hall P., Marron J.S., and Neeman A. 2005. Geometric representation of high dimension, low sample size data. Journal of Royal Statistical Society, Series B, 67: 427–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Hastings W.K. 1970. Monte Carlo simulation methods using Markov chains and their applications. Biometrika 57: 97–109.

    Article  MATH  Google Scholar 

  • Kaufman D.E. and Smith R.L. 1998. Direction choice for accelerated convergence in hit-and-run sampling. Operations Research 46: 84–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Landrø M. and Strønen L.K. 2003. 4D study of fluid effects on seismic data in the Gullfaks Field, North Sea. Geofluids 3: 233–244.

    Article  Google Scholar 

  • Liu J.S., Liang F., and Wong W.H. 2000. The multiple-try method and local optimization in Metropolis sampling. Journal of American Statistical Association 95: 121–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J.S. and Sabatti C. 2000. Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87: 353–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J.S. 2001. Monte Carlo Strategies in Scientific Computing, Springer.

  • Neal R.M. 1996. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 6: 353–366.

    Article  Google Scholar 

  • Peskun P.H. 1973. Optimum Monte Carlo sampling using Markov chains. Biometrika 60: 607–612.

    Article  MATH  MathSciNet  Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. 1996. Numerical Recipes in C: The art of Scientific Computing, Cambridge University Press.

  • Pukkila T.M. and Rao C.R. 1988. Pattern recognition based on scale invariant discriminant functions. Information Sciences 45: 379–389.

    Article  MATH  MathSciNet  Google Scholar 

  • Ripley B. 1987. Stochastic Simulation, Wiley.

  • Roberts G.O. and Gilks W.R. 1994. Convergence of adaptive direction sampling. Journal of Multivariate Analysis 49: 287–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts G.O., Gelman A. and Gilks W.R. 1997. Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied Probability 7: 110–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts G.O. and Rosenthal J.S. 1998. Optimal scaling of discrete approximations to Langevin diffusions. Journal of Royal Statistical Society, Series B, 60: 255–268.

    Article  MATH  MathSciNet  Google Scholar 

  • Sheriff R.E. and Geldart L.P. 1995. Exploration Seismology, Cambridge.

  • Stramer O. and Tweedie R.L. 2003. Langevin-Type Models II: Self-targeting candidates for MCMC algorithms. Methodology & Computing in Applied Probability 1: 307–328.

    Article  MathSciNet  Google Scholar 

  • Tierney L. and Mira A. 1999. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18: 2507–2515.

    Article  Google Scholar 

  • Tjelmeland H. and Eidsvik J. 2004a. On the use of local optimisations within Metropolis–Hastings updates. Journal of Royal Statistical Society, Series B 66: 411–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Tjelmeland H. and Eidsvik J. 2004b. Directional Metropolis–Hastings updates for posteriors with nonlinear likelihoods. Technical report 2004:5, Norwegian University of Science and Technology, www.math.ntnu.no/preprint/statistics/2004/

  • Waagepetersen R. and Sørensen D. 2001. A tutorial on reversible jump MCMC with a view towards applications in QTL-mapping. International Statistical Review 69: 49–61.

    MATH  Google Scholar 

  • Watson G.S. 1983. Statistics on Spheres, Wiley-Interscience.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Eidsvik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eidsvik, J., Tjelmeland, H. On directional Metropolis–Hastings algorithms. Stat Comput 16, 93–106 (2006). https://doi.org/10.1007/s11222-006-5536-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-006-5536-2

Keywords

Navigation