Skip to main content
Log in

Iterative Region-of-Interest Reconstruction from Limited Data Using Prior Information

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In practice, computed tomography and computed laminography applications suffer from incomplete data. In particular, when inspecting large objects with extremely different diameters in longitudinal and transversal directions or when high resolution reconstructions are desired, the physical conditions of the scanning system lead to restricted data and truncated projections, also known as the interior or region-of-interest (ROI) problem. To recover the searched-for density function of the inspected object, we derive a semi-discrete model of the ROI problem that inherently allows the incorporation of geometrical prior information in an abstract Hilbert space setting for bounded linear operators. Assuming that the attenuation inside the object is approximately constant, as for fibre reinforced plastics parts or homogeneous objects where one is interested in locating defects like cracks or porosities, we apply the semi-discrete Landweber–Kaczmarz method to recover the inner structure of the object inside the ROI from the measured data resulting in a semi-discrete iteration method. Finally, numerical experiments for three-dimensional tomographic applications with both an inherent restricted source and ROI problem are provided to verify the proposed method for the ROI reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maisl, M., Porsch, F., & Schorr, C. (2010). Computed laminography for X-ray Inspection of Lightweight Constructions. In International symposium on NDT in aerospace, Berlin.

  2. Tuy, H. K. (1983). An inversion formula for cone-beam reconstruction. SIAM Journal on Applied Mathematics, 43(3), 546–552.

    Article  MathSciNet  Google Scholar 

  3. Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. Philadelphia: SIAM.

  4. Katsevich, A. (2003). A general scheme for constructing inversion algorithms for cone beam CT. International Journal of Mathematics and Mathematical Sciences, 2003(21), 1305–1321.

    Article  MathSciNet  MATH  Google Scholar 

  5. Louis, A. K. (2016). Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors. Inverse Problems, 32(11), 115005.

    Article  MathSciNet  MATH  Google Scholar 

  6. Grangeat, P. (1991). Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform. In G. T. Herman, A. K. Louis, & F. Natterer (Eds.), Mathematical Methods in Tomography (pp. 66–97). New York: Springer. (Lecture Notes in Mathematics).

    Chapter  Google Scholar 

  7. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. Journal of the Optical Society of America, 1(6), 612–619.

    Article  Google Scholar 

  8. Louis, A. K. (2003). Filter design in three-dimensional cone beam tomography: Circular scanning geometry. Inverse Problems, 19(6), S31.

    Article  MathSciNet  MATH  Google Scholar 

  9. Louis, A. K., Weber, T., & Theis, D. (2008). Computing reconstruction kernels for circular 3D cone beam tomography. IEEE Transactions on Medical Imaging, 27(7), 880–886.

    Article  Google Scholar 

  10. Gordon, R., Bender, R., & Herman, G. T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of Theoretical Biology, 29, 471–481.

    Article  Google Scholar 

  11. Andersen, A. H., & Kak, A. C. (1984). Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging, 6(1), 81–94.

    Article  Google Scholar 

  12. Clackdoyle, R., & Defrise, M. (2010). Tomographic reconstruction in the 21st century. IEEE Signal Processing Magazine, 27(4), 60–80.

    Article  Google Scholar 

  13. Louis, A. K., & Rieder, A. (1989). Incomplete data problems in X-ray computerized tomography. Numerische Mathematik, 56(4), 371–383.

    Article  MathSciNet  MATH  Google Scholar 

  14. Noo, F., Clackdoyle, R., & Pack, J. D. (2004). A two-step Hilbert transform method for 2D image reconstruction. Physics in Medicine and Biology, 49(17), 3903.

    Article  Google Scholar 

  15. Zou, Y., Pan, X., & Sidky, E. Y. (2005). Image reconstruction in regions-of-interest from truncated projections in a reduced fan-beam scan. Physics in Medicine and Biology, 50(1), 13.

    Article  Google Scholar 

  16. Defrise, M., Noo, F., Clackdoyle, R., & Kudo, H. (2006). Truncated Hilbert transform and image reconstruction from limited tomographic data. Inverse Problems, 22(3), 1037.

    Article  MathSciNet  MATH  Google Scholar 

  17. Courdurier, M., Noo, F., Defrise, M., & Kudo, H. (2008). Solving the interior problem of computed tomography using a priori knowledge. Inverse Problems, 24(6), 065001.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kudo, H., Courdurier, M., Noo, F., & Defrise, M. (2008). Tiny a priori knowledge solves the interior problem in computed tomography. Physics in Medicine and Biology, 53(9), 3903.

    Article  MATH  Google Scholar 

  19. Yu, H., Ye, Y., & Wang, G. (2008). Interior reconstruction using the truncated Hilbert transform via singular value decomposition. Journal of X-Ray Science and Technology, 16(4), 243–251.

    Google Scholar 

  20. Yu, L., Zou, Y., Sidky, E. Y., Pelizzari, C. A., Munro, P., & Pan, X. (2006). Region of interest reconstruction from truncated data in circular cone-beam CT. IEEE Transactions on Medical Imaging, 25(7), 869–881.

    Article  Google Scholar 

  21. Sidky, E. Y., Kao, C.-M., & Pan, X. (2006). Accurate image reconstruction from few views and limited angle data in divergent beam CT. Journal of X-Ray Science and Technology, 14(2), 119–139.

    Google Scholar 

  22. Zhang, B., & Zeng, G. L. (2007). Two-dimensional iterative region-of-interest (ROI) reconstruction from truncated projection data. Medical Physics, 34, 935–944.

    Article  Google Scholar 

  23. Vogelgesang, J., & Schorr, C. (2016). A semi-discrete Landweber–Kaczmarz method for cone beam tomography and laminography exploiting geometric prior information. Sensing and Imaging, 17(17), 1–20.

    Google Scholar 

  24. Kowar, R., & Scherzer, O. (2002). Convergence analysis of a Landwerber–Kaczmarz method for solving nonlinear ill-posed problems. In V. G. Romanov, S. I. Kabanikhin, Yu E Anikonov, & A. L. Bukhgeim (Eds.), Ill-Posed and Inverse Problems (pp. 253–270). Utrecht: VSP.

    Google Scholar 

  25. Yosida, K. (1995). Functional analysis. Classics in mathematics. Berlin: Springer.

    Book  Google Scholar 

  26. Hamaker, C., Smith, K. T., Solmon, D. C., & Wagner, S. L. (1980). The divergent beam X-ray transform. Rocky Mountain Journal of Mathematics, 10(1), 253–283.

    Article  MathSciNet  MATH  Google Scholar 

  27. Schorr, C., Dörr, L., & Maisl, M. (2015). Applying a priori information to computed laminography. In Proceedings of digital industrial radiology and computed tomography (DIR 2015).

Download references

Acknowledgements

The work of the authors was partially supported by Deutsche Forschungsgemeinschaft (DFG) under Grant LO 310/13-1, by the Sino-German Center for Research Promotion (SGC) under Grant GZ 1025 and the Bundesministerium für Bildung und Forschung (BMBF) project IPro (#20H1309B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Vogelgesang.

Additional information

This article is part of the Topical Collection on Recent Developments in Sensing and Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogelgesang, J., Schorr, C. Iterative Region-of-Interest Reconstruction from Limited Data Using Prior Information. Sens Imaging 18, 16 (2017). https://doi.org/10.1007/s11220-017-0165-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-017-0165-8

Keywords

Navigation