Skip to main content
Log in

Symmetric Toeplitz-Structured Compressed Sensing Matrices

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

How to construct a suitable measurement matrix is an important topic in compressed sensing. A significant part of the recent work is that the measurement matrices are not completely random on the entries but exhibit some considerable structures. In this paper, we proved that a symmetric Toeplitz matrix and its variant can be used as measurement matrices and recovery signal with high probability. Compared with random matrices (e.g. Gaussian and Bernoulli matrices) and some structured matrices (e.g. Toeplitz and circulant matrices), we need to generate fewer independent entries to obtain the measurement matrix while the effectiveness of the recovery keeps good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bajwa, W., Haupt, J., Raz, G., Wright, S., & Nowak, R. (2007).Toeplitz structured compressed sensing matrices, In IEEE/SP Workshop on Statistical Signal Processing (SSP).

  2. Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3), 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E. J. (2008). The restricted isometry property and its implication for compressed sensing. Comptes Rendus Mathematique, 346(9), 589–592.

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal recostruction from highly incomplete Fourier information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  Google Scholar 

  5. Candès, E. J., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory, 52(12), 5406–5425.

    Article  MATH  Google Scholar 

  6. Candès, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51, 4203–4215.

    Article  MATH  Google Scholar 

  7. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, Y.-Z., Huang, T., & Zhu, M. (2012). Compressed sensing based on random symmetric Bernoulli matrix, arXiv:1212.3799.

  9. Fan, Y.-Z., Huang, T., & Zhu, M. (2013). Mixed compressed sensing based on random graphs, arXiv:1307.2117.

  10. Hajnal, A., & Szemerédi, E. (1970). Proof of a conjecture of P Erdös. In P. Erdös, A. Rényi, & V. T. Sós (Eds.), Combinatorial theory and its application (pp. 601–623). Amsterdam: north-holland.

    Google Scholar 

  11. Haykin, S. (2001). Adaptive filter theory. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  12. Rauhut, H. (2007). Random sampling of sparse trigonometric polynomials. Applied and Computational Harmonic Analysis, 22(1), 16–42.

    Article  MathSciNet  MATH  Google Scholar 

  13. Rauhut, H. (2008). Stability results for random sampling of sparse trigonometric polynomials. IEEE Transactions on Information Theory, 54(12), 5661–5670.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Rauhut, & E. Allee. (2009). Circulant and Toeplitz matrices in compressed sensing, Computing Research Repository, vol. abs/0902.4.

  15. Rauhut, H., Romberg, J., & Tropp, J. (2012). Restricted isometries for partial random circulant matrices. Applied and Computational Harmonic Analysis, 32(2), 242–254.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pemmaraju, S. (2001). Equitable coloring extends Chernoff-Hoeffding bounds, In Proceedings of RANDOM-APPROX 2001, Berkeley, CA, pp. 285–296.

  17. Pfander, G., Rauhut, H., & Tropp, J. (2013). The restricted isometry for time-frequency structured random matrices, Probability Theory Related Fields, 156(3–4), 707–737.

    Article  MathSciNet  MATH  Google Scholar 

  18. Romberg, J., Raz, G., Wright, S., & Nowak, R. (2009). Compressive sensing by random convolution. SIAM Journal on Imaging Sciences, 2(4), 1098–1128.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rudelson, M., & Vershynin, R. (2006). Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements, In Conference on Information Sciences and Systems (CISS).

  20. Rabiner, L. R., Crochiere, R. E., & Allen, J. B. (1978). FIR system modeling and identification in the presence of noise and with band-limited inputs. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(4), 319–333.

    Article  MATH  Google Scholar 

  21. Ljung, L. (1987). System identification: Theory for the user. Englewood Cliffs NJ: Prentice Hall.

    MATH  Google Scholar 

  22. Dai, W., & Milenkovic, O. (2008). Subspace pursuit for compressive sensing: Closing the gap between performance and complexity, Computing Research Repository, vol. abs/0803.0.

  23. Tropp, J., Wakin, M., Duarte, M., Baron, D. & Baraniuk, R. (2006). Random filters for compressive sampling and reconstruction, IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France.

Download references

Acknowledgments

Supported by National Natural Science Foundation of China (11071002, 11371028), Program for New Century Excellent Talents in University (NCET-10-0001), Key Project of Chinese Ministry of Education (210091), Specialized Research Fund for the Doctoral Program of Higher Education (20103401110002), Scientific Research Fund for Fostering Distinguished Young Scholars of Anhui University(KJJQ1001), Academic Innovation Team of Anhui University Project (KJTD001B), Open Project of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation Ministry of Education (OEIAM201406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zheng Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Fan, YZ. & Zhu, M. Symmetric Toeplitz-Structured Compressed Sensing Matrices. Sens Imaging 16, 7 (2015). https://doi.org/10.1007/s11220-015-0109-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-015-0109-0

Keywords

Navigation