Skip to main content
Log in

Review on Bioinspired Planetary Regolith-Burrowing Robots

  • Published:
Space Science Reviews Aims and scope Submit manuscript

A Correction to this article was published on 08 December 2021

This article has been updated

Abstract

Penetrating planetary regolith is extremely important to explore the secrets inside extraterrestrial celestial bodies. Applying the concept and method of bionics to endow planetary regolith-burrowing robots (PRBRs) with elegant and flexible mobility as natural creatures is gradually becoming a research hotspot in the field of planetary robotics. Compared with traditional penetrating methods, such as drilling and excavation, bioinspired burrowing methods are still seldom studied. This work presents a detailed review of the progress and perspective of bioinspired PRBRs. According to the burrowing mechanisms and strategies of creatures, the current bioinspired PRBRs are divided into seven categories, namely wriggling, undulating, dual-anchoring, grabbing-pushing, reciprocating, granular fluidizing methods inspired by animals, and root growth method inspired by plants. The general characteristics of these robots are summarized in-depth, and the advantages and disadvantages are compared. Then, the key technologies of determining the functionalities and performance of bioinspired PRBRs are comprehensively analyzed, including bioinspired mechanism design, motion control, robot-regolith interaction, and terrestrial validation. Finally, the development trend of bioinspired PRBRs is presented, including new mechanisms and materials, autonomous burrowing control, and intelligent perception and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 03 December 2021

    The original online version of this article was revised: The original article was published with an affiliation sequence error introduced during typesetting.

  • 08 December 2021

    A Correction to this paper has been published: https://doi.org/10.1007/s11214-021-00867-y

References

  • R. Abe et al., Performance evaluation of contra-rotating drill for DIGBOT, in Proceedings of SICE Annual Conference 2010, Taipei, Taiwan (IEEE, Piscataway, 2010), pp. 885–888

    Google Scholar 

  • AcidCow. How A Locust Lays Eggs, Sep. 2014. https://acidcow.com/pics/63558-how-a-locust-lays-eggs-7-pics.html

  • Adobe Stock. Plant growing. https://stock.adobe.com/hk/search/images?load_type=search&native_visual_search=&similar_content_id=&is_recent_search=1&search_type=recentsearch&k=plant+root&asset_id=23100521

  • R.C. Anderson et al., Collecting samples in gale crater, Mars; an overview of the Mars science laboratory sample acquisition, sample processing and handling system. Space Sci. Rev. 170(1–4), 57–75 (2012)

    Article  ADS  Google Scholar 

  • M. Badescu, et al., Auto-Gopher-II: an autonomous wireline rotary-hammer ultrasonic drill test results. in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, Colorado, USA vol. 10970 (SPIE, Bellingham, 2019), 109700Z

    Google Scholar 

  • Y. Bar-Cohen, K. Zacny, Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets (Wiley, New York, 2009)

    Book  Google Scholar 

  • Y. Bar-Cohen et al., Ultrasonic/sonic sampler and sensor platform for in-situ planetary exploration, in Proceedings International Conference on MEMS, NANO and Smart Systems (IEEE, Piscataway, 2003) pp. 22–31

    Chapter  Google Scholar 

  • Y. Bar-Cohen et al., Auto-Gopher-2-Wireline deep sampler driven by percussive piezoelectric actuator and rotary EM motors, in Advances in Science and Technology, vol. 100 (Trans. Tech. Publ., Bäch, 2016), pp. 207–212

    Google Scholar 

  • M. Barenboim, A. Degani, Steerable burrowing robot: design, modeling and experiments, in 2020 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Paris, 2020), pp. 829–835

    Chapter  Google Scholar 

  • W. Baumgartner et al., Investigating the locomotion of the sandfish in desert sand using NMR-imaging. PLoS ONE 3(10), e3309 (2008)

    Article  ADS  Google Scholar 

  • F. Becker et al., Enabling autonomous locomotion into sand-a mobile and modular drilling robot, in Proceedings of ISR 2016: 47st International Symposium on Robotics, VDE, Munich, Germany (2016), pp. 1–6

    Google Scholar 

  • A.G. Bengough, B.M. McKenzie, Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J. Exp. Bot. 48(4), 885–893 (1997)

    Article  Google Scholar 

  • A.G. Bengough, C.E. Mullins, Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci 41(3), 341–358 (1990)

    Article  Google Scholar 

  • E.B. Bierhaus et al., The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM). Space Sci. Rev. 214(7), 1–46 (2018)

    Article  Google Scholar 

  • E.L. Brainerd et al., X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J. Exp. Zool., Part A, Ecol. Genet. Physiol. 313(5), 262–279 (2010)

    Google Scholar 

  • Peter J. Bryant. Pacific Sand Crab (Mole Crab), November 2006. http://nathistoc.bio.uci.edu/crustacea/Decapoda/Sand

  • Peter J. Bryant. Venerupis philippinarum, Dec. 2008. http://nathistoc.bio.uci.edu/Molluscs/Venerupis.htm

  • R. Budwig, Refractive index matching methods for liquid flow investigations. Exp. Fluids 17(5), 350–355 (1994)

    Article  Google Scholar 

  • A.A. Calderón et al., Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms, in 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Qingdao, 2016), pp. 31–38

    Chapter  Google Scholar 

  • R. Campaci et al., Design and optimization of a terrestrial guided mole for deep subsoil exploration-boring performance experimental analyses, in Proc. of The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space - ISAIRAS, Munich, Germany (2005)

    Google Scholar 

  • J. Che, K.M. Dorgan, Mechanics and kinematics of backward burrowing by the polychaete Cirriformia moorei. J. Exp. Biol. 213(24), 4272–4277 (2010)

    Article  Google Scholar 

  • H. Chen, M.M. Rogalski, J.N. Anker, Advances in functional X-ray imaging techniques and contrast agents. Phys. Chem. Chem. Phys. 14(39), 13469–13486 (2012)

    Article  Google Scholar 

  • L.J. Clark, W.R. Whalley, P.B. Barraclough, How do roots penetrate strong soil? in Roots: The Dynamic Interface Between Plants and the Earth (Springer, Dordrecht, 2003), pp. 93–104

    Chapter  Google Scholar 

  • I. Crawford, A. Smith, MoonLITE: a UK-led mission to the Moon. Astron. Geophys. 49(3), 3 (2008)

    Article  Google Scholar 

  • P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • K.E. Daniels, J.E. Kollmer, J.G. Puckett, Photoelastic force measurements in granular materials. Rev. Sci. Instrum. 88(5), 051808 (2017)

    Article  ADS  Google Scholar 

  • Department of Agriculture, Water and the Environment of the Australian Government. Sexual dimorphism male and female, November 2019. https://www.awe.gov.au/biosecurity-trade/pests-diseases-weeds/locusts/

  • T. Dewei, Z. Weiwei, J. Shengyuan, S. Yi, C. Huazhi, et al., Development of an Inchworm Boring Robot (IBR) for planetary subsurface exploration, in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Piscataway, 2015), pp. 2109–2114

    Chapter  Google Scholar 

  • Y. Ding, N. Gravish, D.I. Goldman, Drag induced lift in granular media. Phys. Rev. Lett. 106(2), 028001 (2011a)

    Article  ADS  Google Scholar 

  • Y. Ding, N. Gravish, D.I. Goldman, Drag induced lift in granular media. Phys. Rev. Lett. 106(2), 028001 (2011b)

    Article  ADS  Google Scholar 

  • K.M. Dorgan, The biomechanics of burrowing and boring. J. Exp. Biol. 218(2), 176–183 (2015)

    Article  Google Scholar 

  • K.M. Dorgan, Kinematics of burrowing by peristalsis in granular sands. J. Exp. Biol. 221(10), jeb167759 (2018)

    Article  Google Scholar 

  • A. Ellery et al., Astrobiological instrumentation for Mars–the only way is down. Int. J. Astrobiol. 1(4), 365–380 (2002)

    Article  ADS  Google Scholar 

  • Envatoelements. Horntail or wood wasp, Urocerus gigas, in front of white background, studio shot. https://elements.envato.com/horntail-wasp-urocerus-gigas-in-front-of-white-bac-PD7PYXK

  • K. Fletcher, Biomimetic Engineering for Space Applications. ESA Special Publication, vol. 1297 (2006)

    Google Scholar 

  • A. Fujiwara et al., Development of both-ends supported flexible auger for lunar earthworm-type excavation robot LEAVO, in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (IEEE, Piscataway, 2018), pp. 924–929

    Chapter  Google Scholar 

  • Y. Gao, Contemporary Planetary Robotics: An Approach Toward Autonomous Systems (Wiley, Hoboken, 2016)

    Book  Google Scholar 

  • Y. Gao, S. Chien, Review on space robotics: toward top-level science through space exploration. Sci. Robot. 2(7), eaan5074 (2017)

    Article  Google Scholar 

  • Y. Gao, C. Pitcher, Analysis of drill head designs for dual-reciprocating drilling technique in planetary regoliths. Adv. Space Res. 56(8), 1765–1776 (2015)

    Article  ADS  Google Scholar 

  • Y. Gao et al., A novel penetration system for in situ astrobiological studies. Int. J. Adv. Robot. Syst. 2(4), 29 (2005)

    Article  Google Scholar 

  • Y. Gao et al., Deployable wood wasp drill for planetary subsurface sampling, in 2006 IEEE Aerospace Conference, Big Sky, MT, USA (IEEE, New York, 2006), pp. 1–8

    Google Scholar 

  • Y. Gao et al., Planetary micro-penetrator concept study with biomimetric drill and sampler design. IEEE Trans. Aerosp. Electron. Syst. 43(3), 875–885 (2007a)

    Article  ADS  Google Scholar 

  • Y. Gao et al., UK lunar science missions: MoonLITE & Moonraker, in Proc. DGLR Int. Symposium to Moon and Beyond, Bremen, Germany (2007b)

    Google Scholar 

  • Y. Gao et al., Bioinspired drill for planetary sampling: literature survey, conceptual design, and feasibility study. J. Spacecr. Rockets 44(3), 703–709 (2007c)

    Article  ADS  Google Scholar 

  • Y. Gao, T.E. Frame, C. Pitcher, Peircing the extraterrestrial surface: integrated robotic drill for planetary exploration. IEEE Robot. Autom. Mag. 22(1), 45–53 (2015)

    Article  Google Scholar 

  • Steve Garvie. Talpa europaea, May 2003. https://www.flickr.com/photos/rainbirder/5538509258/

  • GE (General Electric Company) Research, The Autonomous Dig: GE’s Giant Earthworm Tunneling Robot Finds its Own Way (2021). https://www.ge.com/news/press-releases/the-autonomous-dig-ges-giant-earthworm-tunneling-robot-finds-its-own-way

  • GE (General Electric Company) Research. GE Research to Demonstrate Giant Earthworm-Like Robot for Superfast, Ultra-efficient Tunnel Digging, May 2020. https://www.ge.com/news/press-releases/ge-research-demonstrate-giant-earthworm-robot-superfast-ultra-efficient-tunnel

  • Z.G. Joey et al., An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspir. Biomim. 14(3), 036004 (2019)

    Article  Google Scholar 

  • D.P. Germann, J.P. Carbajal, Burrowing behaviour of robotic bivalves with synthetic morphologies. Bioinspir. Biomim. 8(4), 046009 (2013)

    Article  ADS  Google Scholar 

  • D.P. Germann, W. Schatz, P. Eggenberger Hotz, Artificial bivalves–the biomimetics of underwater burrowing. Proc. Comput. Sci. 7, 169–172 (2011)

    Article  Google Scholar 

  • A. Glyn Bengough et al., Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62(1), 59–68 (2011)

    Article  Google Scholar 

  • T. Gouache et al., Wood wasp inspired planetary and Earth drill, in Biomimetics Learning from Nature (InTech, Rijeka, 2010)

    Google Scholar 

  • T.P. Gouache, et al., First experimental investigation of dual-reciprocating drilling in planetary regoliths: proposition of penetration mechanics. Planet. Space Sci. 59(13), 1529–1541 (2011)

    Article  ADS  Google Scholar 

  • N. Gravish et al., Effects of worker size on the dynamics of fire ant tunnel construction. J. R. Soc. Interface 9(77), 3312–3322 (2012)

    Article  Google Scholar 

  • V.V. Gromov et al., The mobile penetrometer, a “mole” for sub-surface soil investigation, in 7th European Space Mechanisms and Tribology Symposium, vol. 410 (1997), pp. 151–156

    Google Scholar 

  • H. Guo et al., Design and control of an inchworm-inspired soft robot with omega-arching locomotion, in 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2017), pp. 4154–4159

    Chapter  Google Scholar 

  • R.T. Hanlon, J.B. Messenger, Cephalopod Behaviour (Cambridge University Press, Cambridge, 2018)

    Book  Google Scholar 

  • E.W. Hawkes et al., A soft robot that navigates its environment through growth. Sci. Robot. 2(8), eaan3028 (2017)

    Article  Google Scholar 

  • Hans Hillewaert. Ensis directus, Jan. 2007. https://www.flickr.com/photos/81858878@N00/9075249426/in/set-72157634125925483

  • A.E. Hosoi, D.I. Goldman, Beneath our feet: strategies for locomotion in granular media. Annu. Rev. Fluid Mech. 47, 431–453 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Huang, J. Tao, Modeling clam-inspired burrowing in dry sand using cavity expansion theory and dem. Acta Geotech. 15(8), 2305–2326 (2020)

    Article  Google Scholar 

  • M. Iijima, Y. Kono, Development of Golgi apparatus in the root cap cells of maize (Zea mays L.) as affected by compacted soil. Ann. Bot. 70(3), 207–212 (1992)

    Article  Google Scholar 

  • M. Iijima et al., Root cap removal increases root penetration resistance in maize (Zea mays L.). J. Exp. Bot. 54(390), 2105–2109 (2003)

    Article  Google Scholar 

  • K. Isaka et al., Development of underwater drilling robot based on earthworm locomotion. IEEE Access 7, 103127–103141 (2019)

    Article  Google Scholar 

  • J.U.M. Jarvis, J.B. Sale, Burrowing and burrow patterns of East African mole-rats Tachyoryctes, Heliophobius and Heterocephalus. J. Zool. 163(4), 451–479 (1971)

    Article  Google Scholar 

  • J. Kim et al., Development of a mole-like drilling robot system for shallow drilling. IEEE Access 6, 76454–76463 (2018)

    Article  Google Scholar 

  • H. Kitamoto et al., Development of a propulsion mechanism for a lunar subsurface excavation robot with peristaltic crawling mechanism, in Proc. Int. Symposium on Artificial Intelligence, Robot. and Autom. in Space (2012)

    Google Scholar 

  • T. Kobayashi et al., Burrowing rescue robot referring to a mole’s shoveling motion, in Proceedings of the 8th JFPS International Symposium on Fluid Power, OKINAWA, Japan (2011)

    Google Scholar 

  • N.I. Kömle, P. Weiss, K. Leung Yung, Considerations on a suction drill for lunar surface drilling and sampling: I. Feasibility study. Acta Geotech. 3(3), 201–214 (2008)

    Article  Google Scholar 

  • T. Kubota et al., Study on mole-typed deep driller robot for subsurface exploration, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (IEEE, Barcelona, 2005), pp. 1297–1302

    Chapter  Google Scholar 

  • T. Kubota et al., Earth-worm typed drilling robot for subsurface planetary exploration, in 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Sanya, 2007), pp. 1394–1399

    Chapter  Google Scholar 

  • J. Lee et al., Concept design for mole-like excavate robot and its localization method, in 7th International Conference on Robot Intelligence Technology and Applications (RITA) (IEEE, Piscataway, 2019a), pp. 56–60

    Google Scholar 

  • J. Lee et al., Concept design of a novel bio-inspired drilling system for shallow drilling, in 19th International Conference on Control, Automation and Systems (ICCAS) (IEEE, Piscataway, 2019b), pp. 1276–1280

    Chapter  Google Scholar 

  • J. Lee, J. Kim, H. Myung, Design of forelimbs and digging mechanism of biomimetic mole robot for directional drilling, in RITA 2018 (Springer, Singapore, 2020a), pp. 341–351

    Chapter  Google Scholar 

  • J. Lee, C. Tirtawardhana, H. Myung, Development and analysis of digging and soil removing mechanisms for mole-bot: bio-inspired mole-like drilling robot, in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA (2020b), pp. 7792–7799

    Chapter  Google Scholar 

  • D. Lehmann et al., Pangolins and bats living together in underground burrows in Lopé National Park, Gabon. Afr. J. Ecol. 58(3), 540–542 (2020)

    Article  Google Scholar 

  • R. Lichtenheldt, B. Schäfer, O. Krömer, Hammering beneath the surface of Mars–Modeling and simulation of the impact-driven locomotion of the HP3-Mole by coupling enhanced multi-body dynamics and discrete element method, in 58th Ilmenau Scientific Colloquium, Ilmenau, Germany (2014)

    Google Scholar 

  • H. Lim, J. Lee, H. Myung, Underground localization using the dual magnetic sensor for embedded directional drilling robot, in 2019 World Congress on Advances in Nano, Bio, Robotics and Energy (ANBRE19) (Techno-Press, Jeju Island, 2019)

    Google Scholar 

  • Y.-F. Lin, Burrowing and walking mechanisms of North American Moles. PhD thesis, University of Massachusetts Amherst (2017)

  • Y. Liu, B. Weinberg, C. Mavroidis, Mechanical design and modelling of a robotic planetary drilling system, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 42568, Pennsylvania, USA (2006), pp. 925–932

    Google Scholar 

  • B. Liu et al., Kirigami skin improves soft earthworm robot anchoring and locomotion under cohesive soil, in 2nd IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, Piscataway, 2019), pp. 828–833

    Google Scholar 

  • R.D. Lorenz et al., Penetration tests on the DS-2 Mars microprobes: penetration depth and impact accelerometry. Planet. Space Sci. 48(5), 419–436 (2000)

    Article  ADS  Google Scholar 

  • K. Łuszczek, T.A. Przylibski, Potential deposits of selected metallic resources on L chondrite parent bodies. Planet. Space Sci. 168, 40–51 (2019)

    Article  ADS  Google Scholar 

  • I. MacDonald, Burial mechanics of the Pacific sandfish: the role of the ventilatory pump and physical constraints on the behavior. PhD thesis, Northern Arizona University (2015)

  • P.R. Mahaffy et al., The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170(1–4), 401–478 (2012)

    Article  ADS  Google Scholar 

  • R.D. Maladen et al., Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325(5938), 314–318 (2009)

    Article  ADS  Google Scholar 

  • R.D. Maladen et al., Granular lift forces predict vertical motion of a sand-swimming robot, in 2011 IEEE International Conference on Robotics and Automation (IEEE, Shanghai, 2011a), pp. 1398–1403

    Chapter  Google Scholar 

  • R.D. Maladen et al., Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. R. Soc. Interface 8(62), 1332–1345 (2011b)

    Article  Google Scholar 

  • R.D. Maladen et al., Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish. Int. J. Robot. Res. 30(7), 793–805 (2011c)

    Article  Google Scholar 

  • R.B. Malla, W.K. Binienda, A.K. Maji, Design and modeling of the NU smart space drilling system (SSDS), in Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment (ASCE, Austin, 2006), pp. 1–8

    Chapter  Google Scholar 

  • E.V. Mangan et al., Development of a peristaltic endoscope, in Proceedings 2002 IEEE International Conference on Robotics and Automation, vol. 1 (IEEE, Piscataway, 2002), pp. 347–352

    Google Scholar 

  • B. Mazzolai et al., A miniaturized mechatronic system inspired by plant roots for soil exploration. IEEE/ASME Trans. Mechatron. 16(2), 201–212 (2010)

    Article  Google Scholar 

  • C. Menon, M. Ayre, A. Ellery, Biomimetics-a new approach for space system design. Bull. - Electr. Supply Assoc. 125, 20–26 (2006b)

    Google Scholar 

  • A. Mizushina et al., A discharging mechanism for a lunar subsurface explorer with the peristaltic crawling mechanism, in 6th International Conference on Recent Advances in Space Technologies (RAST) (IEEE, Piscataway, 2013), pp. 955–960

    Chapter  Google Scholar 

  • J. Montana, J.K. Finn, M.D. Norman, Liquid sand burrowing and mucus utilisation as novel adaptations to a structurally-simple environment in Octopus kaurna Stranks, 1990. Behaviour 152(14), 1871–1881 (2015)

    Article  Google Scholar 

  • E.A. Murphy, K.M. Dorgan, Burrow extension with a proboscis: mechanics of burrowing by the glycerid Hemipodus simplex. J. Exp. Biol. 214(6), 1017–1027 (2011)

    Article  Google Scholar 

  • T. Myrick et al., Development of an inchworm deep subsurface platform for in situ investigation of Europa’s icy shell, in Workshop on Europa’s Icy Shell: Past, Present, and Future (2004), p. 7041

    Google Scholar 

  • Hyun Myung. Researchers at KAIST have developed a biomimetic robot ’Mole-bot’ for underground mineral exploration, June 2020. https://www.geodrillinginternational.com/underground-drilling/news/1388721/drilling-robot-mole-bot-optimised-for-underground-exploration

  • N.D. Naclerio et al., Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci. Robot. 6(55) (2021)

  • N.D. Naclerio et al., Soft robotic burrowing device with tip-extension and granular fluidization, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2018), pp. 5918–5923

    Chapter  Google Scholar 

  • M. Nagai et al., Development of a flexible excavation unit for a peristaltic crawling seabed excavation robot, in Advances in Cooperative Robotics (World Scientific, Singapore, 2017), pp. 97–105

    Google Scholar 

  • K. Nagaoka et al., Experimental study on autonomous burrowing screw robot for subsurface exploration on the Moon, in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2008), pp. 4104–4109

    Chapter  Google Scholar 

  • K. Nagaoka et al., Robotic screw explorer for lunar subsurface investigation: dynamics modelling and experimental validation, in 2009 International Conference on Advanced Robotics (IEEE, Piscataway, 2009), pp. 1–6

    Google Scholar 

  • K. Nagaoka et al., Experimental analysis of a screw drilling mechanism for lunar robotic subsurface exploration. Adv. Robot. 24(8–9), 1127–1147 (2010)

    Article  Google Scholar 

  • T. Nakajima et al., Lunar penetrator program: LUNAR-A. Acta Astronaut. 39(1–4), 111–119 (1996)

    Article  ADS  Google Scholar 

  • T. Nakatake et al., Soil circulating system for a lunar subsurface explorer robot using a peristaltic crawling mechanism, in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (IEEE, Piscataway, 2016), pp. 407–412

    Chapter  Google Scholar 

  • Nature Picture Library. Naked mole rats (Heterocephalus glaber), digging using teeth, captive, June 2018. https://www.naturepl.com/stock-photo-naked-mole-rats--heterocephalus-glaber--digging-using-teeth-captive-nature-image01595837.html

  • E. Nichols, L.J. McDaid, N. Siddique, Biologically inspired SNN for robot control. IEEE Trans. Cybern. 43(1), 115–128 (2012)

    Article  Google Scholar 

  • N.K. Okwae, Design, Fabrication, and Characterization of a Sand Burrowing Robot. MA thesis, Arizona State University (2020)

  • K. Olaf et al., Design details of the HP3 mole onboard the InSight mission. Acta Astronaut. 164, 152–167 (2019)

    Article  ADS  Google Scholar 

  • H. Omori et al., Excavation mechanism for a planetary underground explorer robot, in ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany: VDE (2010), pp. 1–7

    Google Scholar 

  • H. Omori et al., Planetary subsurface explorer robot with propulsion units for peristaltic crawling, in 2011 IEEE International Conference on Robotics and Automation (IEEE, Piscataway, 2011), pp. 649–654

    Chapter  Google Scholar 

  • H. Omori et al., Development of a novel bio-inspired planetary subsurface explorer: initial experimental study by prototype excavator with propulsion and excavation units. IEEE/ASME Trans. Mechatron. 18(2), 459–470 (2012)

    Article  Google Scholar 

  • D. Ortiz, N. Gravish, M.T. Tolley, Soft robot actuation strategies for locomotion in granular substrates. IEEE Robot. Autom. Lett. 4(3), 2630–2636 (2019)

    Article  Google Scholar 

  • Y. Ozkan-Aydin et al., Nutation aids heterogeneous substrate exploration in a robophysical root, in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, Seoul, 2019), pp. 172–177

    Chapter  Google Scholar 

  • B. Park, H. Myung, Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling. Meas. Sci. Technol. 25(12), 125101 (2014)

    Article  ADS  Google Scholar 

  • B. Park, H. Myung, Resilient underground localization using magnetic field anomalies for drilling environment. IEEE Trans. Ind. Electron. 65(2), 1377–1387 (2017)

    Article  Google Scholar 

  • R.H. Plaut, Mathematical model of inchworm locomotion. Int. J. Non-Linear Mech. 76, 56–63 (2015)

    Article  ADS  Google Scholar 

  • J. Poganski et al., Extended pile driving model to predict the penetration of the Insight/HP3 mole into the Martian soil. Space Sci. Rev. 211(1), 217–236 (2017)

    Article  ADS  Google Scholar 

  • T. Pöschel, T. Schwager, in Computational Granular Dynamics: Models and Algorithms, Berlin, Germany: Springer Science & Business Media (2005)

    Google Scholar 

  • I.L. Pykett et al., Principles of nuclear magnetic resonance imaging. Radiology 143(1), 157–168 (1982)

    Article  Google Scholar 

  • S. Rafeek et al., The inchworm deep drilling system for kilometer scale subsurface exploration of Europa (IDDS), in Forum on Innovative Approaches to Outer Planetary Exploration 2001-2020 (2001), p. 68

    Google Scholar 

  • R.C. Richardson, A. Nagendran, R. Scott, The sweep-extend mechanism: a 10-bar mechanism to perform biologically inspired burrowing motions. Mechatronics 21(6), 939–950 (2011)

    Article  Google Scholar 

  • L. Richter et al., Development and testing of subsurface sampling devices for the Beagle 2 lander. Planet. Space Sci. 50(9), 903–913 (2002)

    Article  ADS  Google Scholar 

  • R.A. Russell, CRABOT: a biomimetic burrowing robot designed for underground chemical source location. Adv. Robot. 25(1–2), 119–134 (2011)

    Article  Google Scholar 

  • A. Sadeghi et al., Robotic mechanism for soil penetration inspired by plant root, in 2013 IEEE International Conference on Robotics and Automation (IEEE, Karlsruhe, 2013), pp. 3457–3462

    Chapter  Google Scholar 

  • A. Sadeghi et al., A novel growing device inspired by plant root soil penetration behaviors. PLoS ONE 9(2), e90139 (2014)

    Article  ADS  Google Scholar 

  • A. Sadeghi, A. Mondini, B. Mazzolai, Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4(3), 211–223 (2017)

    Article  Google Scholar 

  • A. Sadeghi et al., Passive morphological adaptation for obstacle avoidance in a self-growing robot produced by additive manufacturing. Soft Robot. 7(1), 85–94 (2020)

    Article  MathSciNet  Google Scholar 

  • J.L. Schaefer, J. Neathery, J. Stencel, Evaluation of a pneumatic marian soil sampler concept, in NASA-Ames University Consortium Program NCC2-5087, December 15, vol. 95 (1994), p. 17653

    Google Scholar 

  • R.G. Scott, R.C. Richardson, Realities of biologically inspired design with a subterranean digging robot example, in Proceedings of the 6th IASTED International Conference on Robotics and Applications, Cambridge, MA, USA (2005), pp. 226–231

    Google Scholar 

  • H. Shiraishi et al., The present status of the Japanese penetrator mission: LUNAR-A. Adv. Space Res. 42(2), 386–393 (2008)

    Article  ADS  Google Scholar 

  • Alex Slavenko. Scincus scincus, June 2016. https://www.flickr.com/photos/144046509@N08/27202763603

  • P.D. Spudis et al., Evidence for water ice on the Moon: results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res., Planets 118(10), 2016–2029 (2013)

    Article  ADS  Google Scholar 

  • V. Stamenković et al., The next frontier for planetary and human exploration. Nat. Astron. 3(2), 116–120 (2019)

    Article  ADS  Google Scholar 

  • L.J. Stocco, S.E. Salcudean, F. Sassani, Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2001)

    Article  Google Scholar 

  • C.R. Stoker, A. Gonzales, J.R. Zavaleta, Moon/Mars underground mole, in Proc. 2007 NASA Science Technology Conf., vol. 6 (2007)

    Google Scholar 

  • Y.A. Surkov, R.S. Kremnev, Mars-96 mission: Mars exploration with the use of penetrators. Planet. Space Sci. 46(11–12), 1689–1696 (1998)

    Article  ADS  Google Scholar 

  • N. Tadami et al., Curved excavation by a sub-seafloor excavation robot, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2017), pp. 4950–4956

    Chapter  Google Scholar 

  • J.J. Tao, S. Huang, Y. Tang, SBOR: a minimalistic soft self-burrowing-out robot inspired by razor clams. Bioinspir. Biomim. 15(5), 055003 (2020)

    Article  Google Scholar 

  • A. Trebi-Ollennu et al., InSight Mars Lander robotics instrument deployment system. Space Sci. Rev. 214(5), 93 (2018)

    Article  ADS  Google Scholar 

  • E.R. Trueman, The dynamics of burrowing in Ensis (bivalvia). Proc. R. Soc. Lond. B, Biol. Sci. 166(1005), 459–476 (1967)

    Article  ADS  Google Scholar 

  • E.R. Trueman, The mechanism of burrowing of the mole crab, Emerita. J. Exp. Biol. 53(3), 701–710 (1970)

    Article  Google Scholar 

  • S. Van Wassenbergh, S. Heindryckx, A. Dominique, Kinematics of chisel-tooth digging by African mole-rats. J. Exp. Biol. 220(23), 4479–4485 (2017)

    Google Scholar 

  • J.F.V. Vincent, How does the female locust dig her oviposition hole? J. Entomol., Ser. A, Gen. Entomol. 50(3), 175–181 (1976)

    Article  Google Scholar 

  • J.F.V. Vincent, M.J. King, The mechanism of drilling by wood wasp ovipositors. Biomimetics 3, 187–201 (1995)

    Google Scholar 

  • M.R. Walter, D.J. Des Marais, Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus 101(1), 129–143 (1993)

    Article  ADS  Google Scholar 

  • W. Wang et al., Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 9(4), 046006 (2014)

    Article  ADS  Google Scholar 

  • C. Watson, T.K. Morimoto, Permanent magnet-based localization for growing robots in medical applications. IEEE Robot. Autom. Lett. 5(2), 2666–2673 (2020)

    Article  Google Scholar 

  • A.G. Winter et al., Teaching roboclam to dig: the design, testing, and genetic algorithm optimization of a biomimetic robot, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2010), pp. 4231–4235

    Chapter  Google Scholar 

  • A.G. Winter, R.L. Deits, A.E. Hosoi, Localized fluidization burrowing mechanics of Ensis directus. J. Exp. Biol. 215(12), 2072–2080 (2012)

    Article  Google Scholar 

  • A.G. Winter et al., Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspir. Biomim. 9(3), 036009 (2014)

    Article  ADS  Google Scholar 

  • Q. Wu et al., Self-organizing brain emotional learning controller network for intelligent control system of mobile robots. IEEE Access 6, 59096–59108 (2018)

    Article  Google Scholar 

  • R. Xu, A. Yurkewich, R.V. Patel, Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016)

    Article  Google Scholar 

  • D.W. Yalden, The anatomy of mole locomotion. J. Zool. 149(1), 55–64 (1966)

    Article  Google Scholar 

  • Z. Yanshun, W. Shuwei, F. Jiancheng, Measurement-while-drilling instrument based on predigested inertial measurement unit. IEEE Trans. Instrum. Meas. 61(12), 3295–3302 (2012)

    Article  Google Scholar 

  • S. Yasuda, K. Komatsu, S. Tanaka, Self-turning screw mechanism for burying geophysical sensors under regolith, in Proc. Int. Symp. Artif. Intell., Robot. Automat. Space (2012), 09B02

    Google Scholar 

  • K. Zacny, G. Cooper, Considerations, constraints and strategies for drilling on Mars. Planet. Space Sci. 54(4), 345–356 (2006)

    Article  ADS  Google Scholar 

  • K. Zacny, G. Paulsen, G. Cooper, Drill automation for the space environment: lessons learned, in SPE Annual Technical Conference and Exhibition (2007)

    Google Scholar 

  • K. Zacny et al., Development and testing of the pneumatic lunar drill for the emplacement of the corner cube reflector on the Moon. Planet. Space Sci. 71(1), 131–141 (2012)

    Article  ADS  Google Scholar 

  • K. Zacny et al., Pneumatic and percussive penetration approaches for heat flow probe emplacement on robotic lunar missions. Earth Moon Planets 111(1–2), 47–77 (2013a)

    Article  ADS  Google Scholar 

  • K. Zacny et al., Wireline deep drill for exploration of Mars, Europa, and Enceladus, in 2013 IEEE Aerospace Conference (IEEE, Piscataway, 2013b), pp. 1–14

    Google Scholar 

  • K. Zacny et al., PlanetVac: pneumatic regolith sampling system, in 2014 IEEE Aerospace Conference, Big Sky, MT, USA (IEEE, Piscataway, 2014), pp. 1–8

    Google Scholar 

  • T. Zhang et al., Robotic drilling tests in simulated lunar regolith environment. J. Field Robot. 1–25 (2021)

  • W. Zhang et al., Development of an inchworm-type drilling test-bed for planetary subsurface exploration and preliminary experiments, in 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Piscataway, 2016a), pp. 2187–2191

    Chapter  Google Scholar 

  • T. Zhang et al., Design and experimental performance verification of a thermal property test-bed for lunar drilling exploration. Chin. J. Aeronaut. 29(5), 1455–1468 (2016b)

    Article  Google Scholar 

  • T. Zhang et al., Thermal vacuum regolith environment simulator for China’s deep lunar drilling exploration. Appl. Therm. Eng. 144, 779–787 (2018)

    Article  Google Scholar 

  • T. Zhang et al., The progress of extraterrestrial regolith-sampling robots. Nat. Astron. 3(6), 487–497 (2019)

    Article  ADS  Google Scholar 

  • W. Zhang et al., Inchworm drilling system for planetary subsurface exploration. Trans. Mechatron. 25(2), 11 (2020)

    Google Scholar 

  • T. Zhang et al., The technology of lunar regolith environment construction on Earth. Acta Astronaut. 178, 216–232 (2021)

    Article  ADS  Google Scholar 

  • O. Zik, J. Stavans, Y. Rabin, Mobility of a sphere in vibrated granular media. Europhys. Lett. 17(4), 315 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Project for Young Scientists: Grant No. 51905105, Key Project: Grant No. 91748201, and Regular Project: Grant No. 51775011), the Natural Science Foundation of Guangdong Province (Regular Project: Grant No. 2020A1515011262), the State Key Laboratory of Robotics and Systems (HIT) (Grant No. SKLRS-2020-KF12), and the Science and Technology Plan Project of Guangzhou (Grant No. 202102020364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original article was published with an affiliation sequence error introduced during typesetting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Zhang, Y., Zhang, T. et al. Review on Bioinspired Planetary Regolith-Burrowing Robots. Space Sci Rev 217, 87 (2021). https://doi.org/10.1007/s11214-021-00863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-021-00863-2

Keywords

Navigation