Skip to main content

Advertisement

Log in

Mars 2020 Mission Overview

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Mars 2020 mission will seek the signs of ancient life on Mars and will identify, prepare, document, and cache a set of samples for possible return to Earth by a follow-on mission. Mars 2020 and its Perseverance rover thus link and further two long-held goals in planetary science: a deep search for evidence of life in a habitable extraterrestrial environment, and the return of martian samples to Earth for analysis in terrestrial laboratories.

The Mars 2020 spacecraft is based on the design of the highly successful Mars Science Laboratory and its Curiosity rover, but outfitted with a sophisticated suite of new science instruments. Ground-penetrating radar will illuminate geologic structures in the shallow subsurface, while a multi-faceted weather station will document martian environmental conditions. Several instruments can be used individually or in tandem to map the color, texture, chemistry, and mineralogy of rocks and regolith at the meter scale and at the submillimeter scale. The science instruments will be used to interpret the geology of the landing site, to identify habitable paleoenvironments, to seek ancient textural, elemental, mineralogical and organic biosignatures, and to locate and characterize the most promising samples for Earth return. Once selected, ∼35 samples of rock and regolith weighing about 15 grams each will be drilled directly into ultraclean and sterile sample tubes. Perseverance will also collect blank sample tubes to monitor the evolving rover contamination environment.

In addition to its scientific instruments, Perseverance hosts technology demonstrations designed to facilitate future Mars exploration. These include a device to generate oxygen gas by electrolytic decomposition of atmospheric carbon dioxide, and a small helicopter to assess performance of a rotorcraft in the thin martian atmosphere.

Mars 2020 entry, descent, and landing (EDL) will use the same approach that successfully delivered Curiosity to the martian surface, but with several new features that enable the spacecraft to land at previously inaccessible landing sites. A suite of cameras and a microphone will for the first time capture the sights and sounds of EDL.

Mars 2020’s landing site was chosen to maximize scientific return of the mission for astrobiology and sample return. Several billion years ago Jezero crater held a 40 km diameter, few hundred-meter-deep lake, with both an inflow and an outflow channel. A prominent delta, fine-grained lacustrine sediments, and carbonate-bearing rocks offer attractive targets for habitability and for biosignature preservation potential. In addition, a possible volcanic unit in the crater and impact megabreccia in the crater rim, along with fluvially-deposited clasts derived from the large and lithologically diverse headwaters terrain, contribute substantially to the science value of the sample cache for investigations of the history of Mars and the Solar System. Even greater diversity, including very ancient aqueously altered rocks, is accessible in a notional rover traverse that ascends out of Jezero crater and explores the surrounding Nili Planum.

Mars 2020 is conceived as the first element of a multi-mission Mars Sample Return campaign. After Mars 2020 has cached the samples, a follow-on mission consisting of a fetch rover and a rocket could retrieve and package them, and then launch the package into orbit. A third mission could capture the orbiting package and return it to Earth. To facilitate the sample handoff, Perseverance could deposit its collection of filled sample tubes in one or more locations, called depots, on the planet’s surface. Alternatively, if Perseverance remains functional, it could carry some or all the samples directly to the retrieval spacecraft.

The Mars 2020 mission and its Perseverance rover launched from the Eastern Range at Cape Canaveral Air Force Station, Florida, on July 30, 2020. Landing at Jezero Crater will occur on Feb 18, 2021 at about 12:30 PM Pacific Time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • A.C. Allwood, M.R. Walter, B.S. Kamber, C.P. Marshall, I.W. Burch, Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006)

    ADS  Google Scholar 

  • A.C. Allwood et al., PIXL: Planetary instrument for X-ray lithochemistry. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00767-7

    Article  Google Scholar 

  • R.E. Arvidson, P. DeGrosse, J.P. Grotzinger, M.C. Heverly, J. Shechet, S.J. Moreland, M.A. Newby, N. Stein, A.C. Steffy, F. Zhou, A.M. Zastrow, A.R. Vasavada, A.A. Fraeman, E.K. Stilly, Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars. J. Terramech. 73, 73–93 (2017)

    Google Scholar 

  • S. Asher, C. Johnson, Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science 225, 311 (1984)

    ADS  Google Scholar 

  • J. Balaram, I.J. Daubar, J. Bapst, T. Tzanetos, Helicopters on Mars: Compelling science of extreme terrains enabled by an aerial platform. LPI Contrib. 2089, 6277 (2019)

    ADS  Google Scholar 

  • D.W. Beaty, M.M. Grady, H.Y. Mcsween, E. Sefton-Nash, B.L. Carrier, F. Altieri, Y. Amelin, E. Ammannito, M. Anand, L.G. Benning, J.L. Bishop, L.E. Borg, D. Boucher, J.R. Brucato, H. Busemann, K.A. Campbell, A.D. Czaja, V. Debaille, D.J. Des Marais, M. Dixon, B.L. Ehlmann, J.D. Farmer, D.C. Fernandez-Remolar, J. Filiberto, J. Fogarty, D.P. Glavin, Y.S. Goreva, L.J. Hallis, A.D. Harrington, E.M. Hausrath, C.D.K. Herd, B. Horgan, M. Humanyun, T. Kleine, J. Kleinhenz, R. Mackelprang, N. Mangold, L.E. Mayhew, J.T. Mccoy, F.M. Mccubbin, S.M. Mclennan, D.E. Moser, F. Moynier, J.F. Mustard, P.B. Niles, G.G. Ori, F. Raulin, P. Rettberg, M.A. Rucker, N. Schmitz, S.P. Schwenzer, M.A. Sephton, R. Shaheen, Z.D. Sharp, D.L. Schuster, S. Siljestrom, C.L. Smith, J.A. Spry, A. Steele, T.D. Swindle, I.L. Ten Kate, N.J. Tosca, T. Usui, M.J. Van Kranendonk, M. Wadhwa, B.P. Weiss, S.C. Werner, F. Westall, R.M. Wheeler, J. Zipfel, M.P. Zorzano, The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteorit. Planet. Sci. 54, 667–671 (2019)

    ADS  Google Scholar 

  • L. Beegle, R. Bhartia, M. White, L. DeFlores, W. Abbey, Y.-H. Wu, B. Cameron, J. Moore, M. Fries, A. Burton, K.S. Edgett, M.A. Ravine, W. Hug, R. Reid, T. Nelson, S. Clegg, R. Wiens, S. Asher, P. Sobron, SHERLOC: Scanning habitable environments with Raman & luminescence for organics & chemicals, in 2015 IEEE Aerospace Conference (2015), pp. 1–11

    Google Scholar 

  • J.F. Bell III. et al., The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00755-x

    Article  Google Scholar 

  • R. Bhartia, E.C. Salas, W.F. Hug, R.D. Reid, A.L. Lane, K.J. Edwards, K.H. Nealson, Label-free bacterial imaging with deep-UV-laser-induced native fluorescence. Appl. Environ. Microbiol. 76, 7231 (2010)

    Google Scholar 

  • R. Bhartia et al. (2020), this issue

  • M.S. Bramble, J.F. Mustard, M.R. Salvatore, The geological history of Northeast Syrtis Major, Mars. Icarus 293, 66–93 (2017)

    ADS  Google Scholar 

  • M.D. Brasier, O.R. Green, A.P. Jephcoat, A.K. Kleppe, M.J. Van Kranendonk, J.F. Lindsay, A. Steele, N.V. Grassineau, Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002)

    ADS  Google Scholar 

  • A.J. Brown, C.E. Viviano, T.A. Goudge, Olivine-carbonate mineralogy of the Jezero crater region. J. Geophys. Res., Planets 125, e2019JE006011 (2020). https://doi.org/10.1029/2019je006011

    Article  ADS  Google Scholar 

  • N. Cabrol, Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999)

    ADS  Google Scholar 

  • M.H. Carr, J.W. Head III, Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010)

    ADS  Google Scholar 

  • A. Cassan, D. Kubas, J.-P. Beaulieu, M. Dominik, K. Horne, J. Greenhill, J. Wambsganss, J. Menzies, A. Williams, U.G. Jørgensen, A. Udalski, D.P. Bennett, M.D. Albrow, V. Batista, S. Brillant, J.A.R. Caldwell, A. Cole, Ch. Coutures, K.H. Cook, S. Dieters, D.D. Prester, J. Donatowicz, P. Fouqué, K. Hill, N. Kains, S. Kane, J.-B. Marquette, R. Martin, K.R. Pollard, K.C. Sahu, C. Vinter, D. Warren, B. Watson, M. Zub, T. Sumi, M.K. Szymański, M. Kubiak, R. Poleski, I. Soszynski, K. Ulaczyk, G. Pietrzyński, Ł. Wyrzykowski, One or more bound planets per Milky Way star from microlensing observations. Nature 481, 167–169 (2012)

    ADS  Google Scholar 

  • S. Clifford, The evolution of the martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001)

    ADS  Google Scholar 

  • M. de la Torre et al. (2020), this issue

  • K.S. Edgett, R.A. Yingst, M.A. Ravine, M.A. Caplinger, J.N. Maki, F.T. Ghaemi, J.A. Schaffner, J.F. Bell, L.J. Edwards, K.E. Herkenhoff, E. Heydari, L.C. Kah, M.T. Lemmon, M.E. Minitti, T.S. Olson, T.J. Parker, S.K. Rowland, J. Schieber, R.J. Sullivan, D.Y. Sumner, P.C. Thomas, E.H. Jensen, J.J. Simmonds, A.J. Sengstacken, R.G. Willson, W. Goetz, Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Sci. Rev. 170, 259–317 (2012)

    ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett. 39, L11202 (2012). https://doi.org/10.1029/2012GL051594

    Article  ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J.D. Marais, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008)

    ADS  Google Scholar 

  • J.L. Eigenbrode, R.E. Summons, A. Steele, C. Freissinet, M. Millan, R. Navarro-González, B. Sutter, A.C. Mcadam, H.B. Franz, D.P. Glavin, P.D. Archer, P.R. Mahaffy, P.G. Conrad, J.A. Hurowitz, J.P. Grotzinger, S. Gupta, D.W. Ming, D.Y. Sumner, C. Szopa, C. Malespin, A. Buch, P. Coll, Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360, 1096–1101 (2018)

    ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, L14201 (2005). https://doi.org/10.1029/2005GL023456

    Article  ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008)

    ADS  Google Scholar 

  • H.V. Frey, Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006). https://doi.org/10.1029/2005JE002449

    Article  ADS  Google Scholar 

  • T. Goudge, J. Head, J. Mustard, C. Fassett, An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012)

    ADS  Google Scholar 

  • T.A. Goudge, K.L. Aureli, J.W. Head, C.I. Fassett, J.F. Mustard, Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus 260, 346–367 (2015)

    ADS  Google Scholar 

  • T.A. Goudge, R.E. Milliken, J.W. Head, J.F. Mustard, C.I. Fassett, Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration. Earth Planet. Sci. Lett. 458, 357–365 (2017)

    ADS  Google Scholar 

  • T.A. Goudge, D. Mohrig, B.T. Cardenas, C.M. Hughes, C.I. Fassett, Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus 301, 58–75 (2018)

    ADS  Google Scholar 

  • J.P. Grotzinger, J. Crisp, A.R. Vasavada, R.C. Anderson, C.J. Baker, R. Barry, D.F. Blake, P. Conrad, K.S. Edgett, B. Ferdowski, R. Gellert, J.B. Gilbert, M. Golombek, J. Gómez-Elvira, D.M. Hassler, L. Jandura, M. Litvak, P. Mahaffy, J. Maki, M. Meyer, M.C. Malin, I. Mitrofanov, J.J. Simmonds, D. Vaniman, R.V. Welch, R.C. Wiens, Mars science laboratory mission and science investigation. Space Sci. Rev. 170, 5–56 (2012)

    ADS  Google Scholar 

  • J.P. Grotzinger, D.Y. Sumner, L.C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, P.G. Conrad, D. Desmarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S.M. Mclennan, D. Ming, D. Vaniman, J. Crisp, A. Vasavada, K.S. Edgett, M. Malin, D. Blake, R. Gellert, P. Mahaffy, R.C. Wiens, S. Maurice, J.A. Grant, S. Wilson, R.C. Anderson, L. Beegle, R. Arvidson, B. Hallet, R.S. Sletten, M. Rice, J. Bell, J. Griffes, B. Ehlmann, R.B. Anderson, T.F. Bristow, W.E. Dietrich, G. Dromart, J. Eigenbrode, A. Fraeman, C. Hardgrove, K. Herkenhoff, L. Jandura, G. Kocurek, S. Lee, L.A. Leshin, R. Leveille, D. Limonadi, J. Maki, S. Mccloskey, M. Meyer, M. Minitti, H. Newsom, D. Oehler, A. Okon, M. Palucis, T. Parker, S. Rowland, M. Schmidt, S. Squyres, A. Steele, E. Stolper, R. Summons, A. Treiman, R. Williams, A. Yingst, M.S. Team, O. Kemppinen, N. Bridges, J.R. Johnson, D. Cremers, A. Godber, M. Wadhwa, D. Wellington, I. Mcewan, C. Newman, M. Richardson, A. Charpentier, L. Peret, P. King, J. Blank, G. Weigle, S. Li, K. Robertson, V. Sun, M. Baker, C. Edwards, K. Farley, H. Miller, M. Newcombe, C. Pilorget, C. Brunet, V. Hipkin, R. Leveille, G. Marchand, P.S. Sanchez, L. Favot, G. Cody, L. Fluckiger, D. Lees, A. Nefian, M. Martin, M. Gailhanou, F. Westall, G. Israel, C. Agard, J. Baroukh, C. Donny, A. Gaboriaud, P. Guillemot, V. Lafaille, E. Lorigny, A. Paillet, R. Perez, M. Saccoccio, C. Yana, C. Armiens-Aparicio, J.C. Rodriguez, I.C. Blazquez, F.G. Gomez, J. Gomez-Elvira, S. Hettrich, A.L. Malvitte, M.M. Jimenez, J. Martinez-Frias, J. Martin-Soler, F.J. Martin-Torres, A.M. Jurado, L. Mora-Sotomayor, G.M. Caro, S.N. Lopez, V. Peinado-Gonzalez, J. Pla-Garcia, J.A.R. Manfredi, J.J. Romeral-Planello, S.A.S. Fuentes, E.S. Martinez, J.T. Redondo, R. Urqui-O’Callaghan, M.-P.Z. Mier, S. Chipera, J.-L. Lacour, P. Mauchien, J.-B. Sirven, H. Manning, A. Fairen, A. Hayes, J. Joseph, R. Sullivan, P. Thomas, A. Dupont, A. Lundberg, N. Melikechi, A. Mezzacappa, J. Demarines, D. Grinspoon, G. Reitz, B. Prats, E. Atlaskin, M. Genzer, A.-M. Harri, H. Haukka, H. Kahanpaa, J. Kauhanen, M. Paton, J. Polkko, W. Schmidt, T. Siili, C. Fabre, J. Wray, M.B. Wilhelm, F. Poitrasson, K. Patel, S. Gorevan, S. Indyk, G. Paulsen, D. Bish, B. Gondet, Y. Langevin, C. Geffroy, D. Baratoux, G. Berger, A. Cros, C. D’Uston, O. Forni, O. Gasnault, J. Lasue, Q.-M. Lee, P.-Y. Meslin, E. Pallier, Y. Parot, P. Pinet, S. Schroder, M. Toplis, E. Lewin, W. Brunner, E. Heydari, C. Achilles, B. Sutter, M. Cabane, D. Coscia, C. Szopa, F. Robert, V. Sautter, S. Le Mouelic, M. Nachon, A. Buch, F. Stalport, P. Coll, P. Francois, F. Raulin, S. Teinturier, J. Cameron, S. Clegg, A. Cousin, D. Delapp, R. Dingler, R.S. Jackson, S. Johnstone, N. Lanza, C. Little, T. Nelson, R.B. Williams, A. Jones, L. Kirkland, B. Baker, B. Cantor, M. Caplinger, S. Davis, B. Duston, D. Fay, D. Harker, P. Herrera, E. Jensen, M.R. Kennedy, G. Krezoski, D. Krysak, L. Lipkaman, E. Mccartney, S. Mcnair, B. Nixon, L. Posiolova, M. Ravine, A. Salamon, L. Saper, K. Stoiber, K. Supulver, J. Van Beek, T. Van Beek, R. Zimdar, K.L. French, K. Iagnemma, K. Miller, F. Goesmann, W. Goetz, S. Hviid, M. Johnson, M. Lefavor, E. Lyness, E. Breves, M.D. Dyar, C. Fassett, L. Edwards, R. Haberle, T. Hoehler, J. Hollingsworth, M. Kahre, L. Keely, C. Mckay, L. Bleacher, W. Brinckerhoff, D. Choi, J.P. Dworkin, M. Floyd, C. Freissinet, J. Garvin, D. Glavin, D. Harpold, D.K. Martin, A. Mcadam, A. Pavlov, E. Raaen, M.D. Smith, J. Stern, F. Tan, M. Trainer, A. Posner, M. Voytek, A. Aubrey, A. Behar, D. Blaney, D. Brinza, L. Christensen, L. Deflores, J. Feldman, S. Feldman, G. Flesch, I. Jun, D. Keymeulen, M. Mischna, J.M. Morookian, B. Pavri, M. Schoppers, A. Sengstacken, J.J. Simmonds, N. Spanovich, M.D.L.T. Juarez, C.R. Webster, A. Yen, P.D. Archer, F. Cucinotta, J.H. Jones, R.V. Morris, P. Niles, E. Rampe, T. Nolan, M. Fisk, L. Radziemski, B. Barraclough, S. Bender, D. Berman, E.N. Dobrea, R. Tokar, T. Cleghorn, W. Huntress, G. Manhes, J. Hudgins, T. Olson, N. Stewart, P. Sarrazin, E. Vicenzi, M. Bullock, B. Ehresmann, V. Hamilton, D. Hassler, J. Peterson, S. Rafkin, C. Zeitlin, F. Fedosov, D. Golovin, N. Karpushkina, A. Kozyrev, M. Litvak, A. Malakhov, I. Mitrofanov, M. Mokrousov, S. Nikiforov, V. Prokhorov, A. Sanin, V. Tretyakov, A. Varenikov, A. Vostrukhin, R. Kuzmin, B. Clark, M. Wolff, O. Botta, D. Drake, K. Bean, M. Lemmon, S.P. Schwenzer, E.M. Lee, R. Sucharski, M.A.D.P. Hernandez, J.J.B. Avalos, M. Ramos, M.-H. Kim, C. Malespin, I. Plante, J.-P. Muller, R. Navarro-Gonzalez, R. Ewing, W. Boynton, R. Downs, M. Fitzgibbon, K. Harshman, S. Morrison, O. Kortmann, A. Williams, G. Lugmair, M.A. Wilson, B. Jakosky, T. Balic-Zunic, J. Frydenvang, J.K. Jensen, K. Kinch, A. Koefoed, M.B. Madsen, S.L.S. Stipp, N. Boyd, J.L. Campbell, G. Perrett, I. Pradler, S. Vanbommel, S. Jacob, T. Owen, H. Savijarvi, E. Boehm, S. Bottcher, S. Burmeister, J. Guo, J. Kohler, C.M. Garcia, R. Mueller-Mellin, R. Wimmer-Schweingruber, J.C. Bridges, T. Mcconnochie, M. Benna, H. Franz, H. Bower, A. Brunner, H. Blau, T. Boucher, M. Carmosino, S. Atreya, H. Elliott, D. Halleaux, N. Renno, M. Wong, R. Pepin, B. Elliott, J. Spray, L. Thompson, S. Gordon, A. Ollila, J. Williams, P. Vasconcelos, J. Bentz, K. Nealson, R. Popa, J. Moersch, C. Tate, M. Day, R. Francis, E. Mccullough, E. Cloutis, I.L. Ten Kate, D. Scholes, S. Slavney, T. Stein, J. Ward, J. Berger, J.E. Moores, A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014)

    Google Scholar 

  • I. Halevy, W.W. Fischer, J.M. Eiler, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108, 16895–16899 (2011)

    ADS  Google Scholar 

  • E. Hauber, P. Broz, F. Jagert, P. Jodlowski, T. Platz, Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, 5 (2011)

    Google Scholar 

  • J.N. Head, H.J. Melosh, B.A. Ivanov, Martian meteorite launch: High-speed ejecta from small craters. Science 298, 1752–1756 (2002)

    ADS  Google Scholar 

  • B.H.N. Horgan, R.B. Anderson, G. Dromart, E.S. Amador, M.S. Rice, The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 339, 113526 (2020)

    Google Scholar 

  • D.R. Lowe, Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284, 441–443 (1980)

    ADS  Google Scholar 

  • J.I. Lunine, Ocean worlds exploration. Acta Astronaut. 131, 123–130 (2017)

    ADS  Google Scholar 

  • J.N. Maki et al., Mars exploration rover engineering cameras. J. Geophys. Res. 108(E12), 8071 (2003). https://doi.org/10.1029/2003JE002077

    Article  Google Scholar 

  • J.N. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars science laboratory engineering cameras. Space Sci. Rev. 170, 77–93 (2012)

    ADS  Google Scholar 

  • J.N. Maki et al., The Mars 2020 engineering cameras and microphone on the perseverance rover: A next-generation imaging system for Mars exploration. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00765-9

    Article  Google Scholar 

  • M.C. Malin, M.A. Ravine, M.A. Caplinger, F. Tony Ghaemi, J.A. Schaffner, J.N. Maki, J.F. Bell 3rd, J.F. Cameron, W.E. Dietrich, K.S. Edgett, L.J. Edwards, J.B. Garvin, B. Hallet, K.E. Herkenhoff, E. Heydari, L.C. Kah, M.T. Lemmon, M.E. Minitti, T.S. Olson, T.J. Parker, S.K. Rowland, J. Schieber, R. Sletten, R.J. Sullivan, D.Y. Sumner, R. Aileen Yingst, B.M. Duston, S. McNair, E.H. Jensen, The Mars Science Laboratory (MSL) mast cameras and descent imager: Investigation and instrument descriptions. Earth Space Sci. 4, 506–539 (2017)

    ADS  Google Scholar 

  • L. Mandon, C. Quantin-Nataf, P. Thollot, N. Mangold, L. Lozac’H, G. Dromart, P. Beck, E. Dehouck, S. Breton, C. Millot, M. Volat, Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus 336, 113436 (2020)

    Google Scholar 

  • J.A.R. Manfredi et al. (2020), this issue

  • M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    ADS  Google Scholar 

  • D.S. McKay, E.K. Gibson, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clemett, X.D.F. Chillier, C.R. Maechling, R.N. Zare, Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924–930 (1996)

    ADS  Google Scholar 

  • S.M. McLennan, Planning for Mars returned sample science: Final report of the MSR end-to-end international science analysis group (E2E-iSAG). Astrobiology 12, 175–230 (2012)

    Google Scholar 

  • H.Y. McSween, Petrology on Mars. Am. Mineral. 100, 2380–2395 (2015). https://doi.org/10.2138/am-2015-5257

    Article  ADS  Google Scholar 

  • H.Y. McSween, The search for biosignatures in martian meteorite Allan Hills 84001, in Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics, ed. by B. Cavalazzi, F. Westall (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-96175-0_8

    Chapter  Google Scholar 

  • C. Mileikowsky, Natural transfer of viable microbes in space 1. From Mars to Earth and Earth to Mars. Icarus 145, 391–427 (2000)

    ADS  Google Scholar 

  • J. Mustard, M. Adler, A. Allwood, D. Bass, D. Beaty, J.F. Bell, W. Brinckerhoff, M. Carr, D. Des Marais, B. Drake, K. Edgett, J. Eigenbrode, L. Elkins-Tanton, J. Grant, S. Milkovich, D. Ming, C. Moore, S. Murchie, T.C. Onstott, A. Treiman, Report of the Mars 2020 Science Definition Team (2013)

    Google Scholar 

  • National Research Council, Vision and Voyages for Planetary Science in the Decade 2013-2022 (The National Academies Press, Washington, 2011). Available at: https://www.nap.edu/catalog/13117/vision-and-voyages-for-planetary-science-in-the-decade-2013-2022

    Google Scholar 

  • C.E. Newman, C. Lee, M.A. Mischna, M.I. Richardson, J.H. Shirley, An initial assessment of the impact of postulated orbit-spin coupling on Mars dust storm variability in fully interactive dust simulations. Icarus 317, 649–668 (2019)

    ADS  Google Scholar 

  • L.E. Nyquist, D.D. Bogard, C.-Y. Shih, A. Greshake, D. Stöffler, O. Eugster, Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001)

    ADS  Google Scholar 

  • G.R. Osinski, L.L. Tornabene, N.R. Banerjee, C.S. Cockell, R. Flemming, M.R.M. Izawa, J. Mccutcheon, J. Parnell, L.J. Preston, A.E. Pickersgill, A. Pontefract, H.M. Sapers, G. Southam, Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–363 (2013)

    ADS  Google Scholar 

  • J. Pla-Garcia, S.C.R. Rafkin, M. Kahre, J. Gomez-Elvira, V.E. Hamilton, S. Navarro, J. Torres, M. Marín, A.R. Vasavada, The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus 280, 103–113 (2016)

    ADS  Google Scholar 

  • R. Rieder, T. Economou, H. Wänke, A. Turkevich, J. Crisp, J. Brückner, G. Dreibus, H.Y. Mcsween, The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode. Science 278, 1771–1774 (1997)

    ADS  Google Scholar 

  • J.D. Rummel, D.W. Beaty, M.A. Jones, C. Bakermans, N.G. Barlow, P.J. Boston, V.F. Chevrier, B.C. Clark, J.-P.P. De Vera, R.V. Gough, J.E. Hallsworth, J.W. Head, V.J. Hipkin, T.L. Kieft, A.S. Mcewen, M.T. Mellon, J.A. Mikucki, W.L. Nicholson, C.R. Omelon, R. Peterson, E.E. Roden, B. Sherwood Lollar, K.L. Tanaka, D. Viola, J.J. Wray, A new analysis of Mars “special regions”: Findings of the second MEPAG special regions science analysis group (SR-SAG2). Astrobiology 14, 887–968 (2014)

    ADS  Google Scholar 

  • S.C. Schon, J.W. Head, C.I. Fassett, An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate. Planet. Space Sci. 67, 28–45 (2012)

    ADS  Google Scholar 

  • E.L. Scheller, B.L. Ehlmann, Composition, stratigraphy, and geological history of the Noachian Basement surrounding the Isidis impact basin. J. Geophys. Res., Planets 125, e2019JE006190 (2020). https://doi.org/10.1029/2019JE006190

    Article  ADS  Google Scholar 

  • J.W. Schopf, Microfossils of the early Archean Apex chert: New evidence of the antiquity of life. Science 260, 640–646 (1993)

    ADS  Google Scholar 

  • S. Shahrzad, K.M. Kinch, T.A. Goudge, C.I. Fassett, D.H. Needham, C. Quantin-Nataf, C.P. Knudsen, Crater statistics on the dark-toned, mafic floor unit in Jezero crater, Mars. Geophys. Res. Lett. 46, 2408–2416 (2019). https://doi.org/10.1029/2018GL081402

    Article  ADS  Google Scholar 

  • P.H. Smith, Results from the Mars Pathfinder Camera. Science 278, 1758–1765 (1997)

    ADS  Google Scholar 

  • G.A. Soffen, Scientific results of the viking missions. Science 194, 1274–1276 (1976)

    ADS  Google Scholar 

  • S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1–10 (2005)

    ADS  Google Scholar 

  • K.M. Stack et al., Photogeologic map of the perseverance rover field site in Jezero Crater constructed by the Mars 2020 Science Team. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00739-x

    Article  Google Scholar 

  • K.L. Tanaka, S.J. Robbins, C.M. Fortezzo, J.A. Skinner, T.M. Hare, The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet. Space Sci. 95, 11–24 (2014)

    ADS  Google Scholar 

  • M.J. Van Kranendonk, G.E. Webb, B.S. Kamber, Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1, 91–108 (2003)

    Google Scholar 

  • M.R. Walter, R. Buick, J.S.R. Dunlop, Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284, 443–445 (1980)

    ADS  Google Scholar 

  • E.L. Walton, S.P. Kelley, C.D.K. Herd, Isotopic and petrographic evidence for young Martian basalts. Geochim. Cosmochim. Acta 72, 5819–5837 (2008)

    ADS  Google Scholar 

  • P.H. Warren, Lunar and martian meteorite delivery services. Icarus 111, 338–363 (1994)

    ADS  Google Scholar 

  • D. Way, R. Powell, A. Chen, A. Steltzner, M. San Martin, P. Burkhart, G. Mendeck, Mars science laboratory: Entry, descent, and landing system performance, in IEEE Aerosp. Conf. Proc. (2007), pp. 1–19

    Google Scholar 

  • B.P. Weiss, A low temperature transfer of ALH84001 from Mars to Earth. Science 290, 791–795 (2000)

    ADS  Google Scholar 

  • S.C. Werner, The global martian volcanic evolutionary history. Icarus 201, 44–68 (2009)

    ADS  Google Scholar 

  • R.C. Wiens et al., The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and combined system tests. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00777-5

    Article  Google Scholar 

  • K.H. Williford, K.A. Farley, K.M. Stack, A.C. Allwood, D. Beaty, L.W. Beegle, R. Bhartia, A.J. Brown, M. de la T. Juarez, S.-E. Hamran, M.H. Hecht, J.A. Hurowitz, J.A. Rodriguez-Manfredi, S. Maurice, S. Milkovich, R.C. Wiens, The NASA Mars 2020 rover mission and the search for extraterrestrial life, in From Habitability to Life on Mars, ed. by N.A. Cabrol, E.A. Grin (2018), pp. 275–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Farley.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Mars 2020 Mission

Edited by Kenneth A. Farley, Kenneth H. Williford and Kathryn M. Stack

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farley, K.A., Williford, K.H., Stack, K.M. et al. Mars 2020 Mission Overview. Space Sci Rev 216, 142 (2020). https://doi.org/10.1007/s11214-020-00762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00762-y

Keywords

Navigation