Skip to main content
Log in

Feasibility and Accuracy of Thermophysical Estimation of Asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 Thermal Infrared Imager

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present the results of a numerical study to prepare for the remote sensing of asteroid 162173 Ryugu (1999 JU3) using the Hayabusa2 thermal infrared imager (TIR). We simulated the thermal characteristics of the asteroid with a thermophysical model (TPM) using an ideal body with a smooth and spherical surface, and investigated its feasibility to determine the thermophysical properties of the asteroid under two possible spin vectors; \((\lambda_{\mathrm{ecl}}, \beta_{\mathrm{ecl}}) = (73^{\circ}, -62^{\circ})\) and \((331^{\circ}, 20^{\circ})\). Each of the simulated snapshots taken at various local times during the 1.5-year proximity phase was analyzed to estimate uncertainties of the diurnal thermal phase delay to infer the thermal inertia of Ryugu. The temperature in a pixel was simulated based on the specification of the imager and the observing geometry. Moreover, we carried out a regression analysis to estimate albedo and thermal emissivity from the time variation of surface temperature. We also investigated the feasibility of determining thermal phase delay in a first attempt using realistic rough surfaces. We found that precise determination of the thermal phase delay would be difficult in the \((331^{\circ}, 20^{\circ})\) spin type unless the surface was nearly smooth. In contrast, the thermal phase delay is likely to be observable even if the surface topography is moderately rough in the other spin type. From the smooth-surface model, we obtained a less than 20% error of thermal inertia on observation opportunities under the likely range of thermal inertia \(\leq 1000~\mbox{J}\,\mbox{m}^{-2}\,\mbox{s}^{-1/2}\, \mbox{K}^{-1}\). The error of thermal inertia exceeded 50% under a realistic surface with roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • M. Abe, K. Kawakami, S. Hasegawa, D. Kuroda, M. Yoshikawa, T. Kasuga, K. Kitazato, Y. Sarugaku, D. Kinoshita, S. Miyasaka, S. Urakawa, S. Okumura, Y. Takagi, N. Takato, T. Fujiyoshi, H. Terada, T. Wada, Y. Ita, F. Vilas, P. Weissman, Y. Choi, S. Larson, S. Bus, T. Müller, Ground-based observational campaign for asteroid 162173 1999 JU3. 37th COSPAR Scientific Assembly, Committee on Space Research B04-0061-08 (2008)

  • J. Audouard, F. Poulet, M. Vincendon, J.-P. Bibring, F. Forget, Y. Langevin, B. Gondet, Mars surface thermal inertia and heterogeneities from OMEGA/MEX. Icarus 233(0), 194–213 (2014). doi:10.1016/j.icarus.2014.01.045

    Article  ADS  Google Scholar 

  • A.M. Baldridge, S.J. Hook, C.I. Grove, G. Rivera, The ASTER spectral library version 2.0. Remote Sens. Environ. 113(4), 711–715 (2009). doi:10.1016/j.rse.2008.11.007

    Article  ADS  Google Scholar 

  • J.L. Bandfield, R.R. Ghent, A.R. Vasavada, D.A. Paige, S.J. Lawrence, M.S. Robinson, Lunar surface rock abundance and regolith fines temperatures derived from LRO diviner radiometer data. J. Geophys. Res. 116(E12), E00H02 (2011). doi:10.1029/2011JE003866

    ADS  Google Scholar 

  • H. Campins, J.P. Emery, M. Kelley, Y. Fernández, J. Licandro, M. Delbó, A. Barucci, E. Dotto, Spitzer observations of spacecraft target 162173 (1999 JU3). Astron. Astrophys. 503(2), 17–20 (2009). doi:10.1051/0004-6361/200912374

    Article  ADS  Google Scholar 

  • H. Campins, J. de León, A. Morbidelli, J. Licandro, J. Gayon-Markt, M. Delbó, P. Michel, The origin of asteroid 162173 (1999 JU3). Astron. J. 146(2), 26 (2013). http://stacks.iop.org/1538-3881/146/i=2/a=26

    Article  ADS  Google Scholar 

  • M.T. Capria, F. Tosi, M.C. De Sanctis, F. Capaccioni, E. Ammannito, A. Frigeri, F. Zambon, S. Fonte, E. Palomba, D. Turrini, T.N. Titus, S.E. Schrder, M. Toplis, J.-Y. Li, J.-P. Combe, C.A. Raymond, C.T. Russell, Vesta surface thermal properties map. Geophys. Res. Lett. 41(5), 1438–1443 (2014). doi:10.1002/2013GL059026

    Article  ADS  Google Scholar 

  • S.R. Chesley, S.J. Ostro, D. Vokrouhlický, D. Čapek, J.D. Giorgini, M.C. Nolan, J.-L. Margot, A.A. Hine, L.A.M. Benner, A.B. Chamberlin, Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302(5651), 1739–1742 (2003). doi:10.1126/science.1091452

    Article  ADS  Google Scholar 

  • A. Coradini, F. Capaccioni, S. Erard, G. Arnold, M.C. De Sanctis, G. Filacchione, F. Tosi, M.A. Barucci, M.T. Capria, E. Ammannito, D. Grassi, G. Piccioni, S. Giuppi, G. Bellucci, J. Benkhoff, J.P. Bibring, A. Blanco, M. Blecka, D. Bockelee-Morvan, F. Carraro, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, P. Drossart, E.T. Encrenaz, C. Federico, U. Fink, S. Fonti, L. Giacomini, W.H. Ip, R. Jaumann, E. Kuehrt, Y. Langevin, G. Magni, T. McCord, V. Mennella, S. Mottola, G. Neukum, V. Orofino, P. Palumbo, U. Schade, B. Schmitt, F. Taylor, D. Tiphene, G. Tozzi, The surface composition and temperature of asteroid 21 Lutetia as observed by ROSSETA/VIRTIS. Science 334(6055), 492–494 (2011). doi:10.1126/science.1204062

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, H. Rickman, Physical properties of morphological units on comet 9p/Tempel 1 derived from near-IR deep impact spectra. Icarus 201(1), 335–357 (2009). doi:10.1016/j.icarus.2008.12.039

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, O. Groussin, M.F. AHearn, T. Farnham, L.M. Feaga, M.S. Kelley, K.P. Klaasen, F. Merlin, S. Protopapa, H. Rickman, J.M. Sunshine, P.C. Thomas, Thermal inertia and surface roughness of comet 9p/Tempel 1. Icarus 224(1), 154–171 (2013). doi:10.1016/j.icarus.2013.02.008

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, H. Rickman, Surface roughness and three-dimensional heat conduction in thermophysical models. Icarus 243, 58–77 (2014). doi:10.1016/j.icarus.2014.08.039

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, H. Rickman, J.L. Bandfield, O. Groussin, P.J. Gutiérrez, M. Wilska, M.T. Capria, J.P. Emery, J. Helbert, L. Jorda, A. Maturilli, T.G. Mueller, Interpretation of thermal emission, I: the effect of roughness for spatially resolved atmosphereless bodies. Icarus 252, 1–21 (2015). doi:10.1016/j.icarus.2014.12.029

    Article  ADS  Google Scholar 

  • M. Delbó, M. Mueller, J.P. Emery, B. Rozitis, M.T. Capria, Asteroid thermophysical modeling. ArXiv e-prints (2015)

  • M. Delbó, A. Dell’Oro, A.W. Harris, S. Mottola, M. Mueller, Thermal inertia of near-earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus 190(1), 236–249 (2007). doi:10.1016/j.icarus.2007.03.007

    Article  ADS  Google Scholar 

  • M. Delbó, G. Libourel, J. Wilkerson, N. Murdoch, P. Michel, K.T. Ramesh, C. Ganino, C. Verati, S. Marchi, Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014). doi:10.1038/nature13153

    Article  ADS  Google Scholar 

  • J.P. Emery, A.L. Sprague, F.C. Witteborn, J.E. Colwell, R.W.H. Kozlowski, D.H. Wooden, Mercury: thermal modeling and mid-infrared (\(512~\upmu\mbox{m}\)) observations. Icarus 136(1), 104–123 (1998). doi:10.1006/icar.1998.6012

    Article  ADS  Google Scholar 

  • J.P. Emery, Y.R. Fernández, M.S.P. Kelley, K.T. Warden (nèe Crane), C. Hergenrother, D.S. Lauretta, M.J. Drake, H. Campins, J. Ziffer, Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus 234, 17–35 (2014). doi:10.1016/j.icarus.2014.02.005

    Article  ADS  Google Scholar 

  • R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the thermal emission imaging system (THEMIS): thermal model and applications. J. Geophys. Res., Planets 111(E12), E12004 (2006). doi:10.1029/2006JE002735

    Article  ADS  Google Scholar 

  • F.M. Flasar, R.K. Achterberg, B.J. Conrath, J.C. Pearl, G.L. Bjoraker, D.E. Jennings, P.N. Romani, A.A. Simon-Miller, V.G. Kunde, C.A. Nixon, B. Bzard, G.S. Orton, L.J. Spilker, J.R. Spencer, P.G.J. Irwin, N.A. Teanby, T.C. Owen, J. Brasunas, M.E. Segura, R.C. Carlson, A. Mamoutkine, P.J. Gierasch, P.J. Schinder, M.R. Showalter, C. Ferrari, A. Barucci, R. Courtin, A. Coustenis, T. Fouchet, D. Gautier, E. Lellouch, A. Marten, R. Prang, D.F. Strobel, S.B. Calcutt, P.L. Read, F.W. Taylor, N. Bowles, R.E. Samuelson, M.M. Abbas, F. Raulin, P. Ade, S. Edgington, S. Pilorz, B. Wallis, E.H. Wishnow, Temperatures, winds, and composition in the saturnian system. Science 307(5713), 1247–1251 (2005). doi:10.1126/science.1105806

    Article  ADS  Google Scholar 

  • T. Fukuhara, M. Taguchi, T. Imamura, M. Nakamura, M. Ueno, M. Suzuki, N. Iwagami, M. Sato, K. Mitsuyama, G.L. Hashimoto, R. Ohshima, T. Kouyama, H. Ando, M. Futaguchi, Lir: Longwave infrared camera onboard the Venus orbiter Akatsuki. Earth Planets Space 63(9), 1009–1018 (2012). doi:10.5047/eps.2011.06.019

    Article  ADS  Google Scholar 

  • I. Gatley, H. Kieffer, E. Miner, G. Neugebauer, Infrared observations of Phobos from Mariner 9. Astrophys. J. 190, 497–508 (1974). doi:10.1086/152902

    Article  ADS  Google Scholar 

  • M. Grott et al., Space Sci. Rev., this issue (2015)

  • O. Groussin, M.F. A’Hearn, J.-Y. Li, P.C. Thomas, J.M. Sunshine, C.M. Lisse, K.J. Meech, T.L. Farnham, L.M. Feaga, W.A. Delamere, Surface temperature of the nucleus of comet 9p/Tempel 1. Icarus 187(1), 16–25 (2007). doi:10.1016/j.icarus.2006.08.030

    Article  ADS  Google Scholar 

  • O. Groussin, J.M. Sunshine, L.M. Feaga, L. Jorda, P.C. Thomas, J.-Y. Li, M.F. A’Hearn, M.J.S. Belton, S. Besse, B. Carcich, T.L. Farnham, D. Hampton, K. Klaasen, C. Lisse, F. Merlin, S. Protopapa, The temperature, thermal inertia, roughness and color of the nuclei of comets 103P/Hartley 2 and 9P/Tempel 1. Icarus 222(2), 580–594 (2013). Stardust/EPOXI. doi:10.1016/j.icarus.2012.10.003

    Article  ADS  Google Scholar 

  • S. Gulkis, S. Keihm, L. Kamp, S. Lee, P. Hartogh, J. Crovisier, E. Lellouch, P. Encrenaz, D. Bockelee-Morvan, M. Hofstadter, G. Beaudin, M. Janssen, P. Weissman, P.A. von Allmen, T. Encrenaz, C.R. Backus, W.-H. Ip, P.F. Schloerb, N. Biver, T. Spilker, I. Mann, Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft. Planet. Space Sci. 66(1), 31–42 (2012). doi:10.1016/j.pss.2011.12.004

    Article  ADS  Google Scholar 

  • S. Gulkis, M. Allen, P. von Allmen, G. Beaudin, N. Biver, D. Bockelee-Morvan, M. Choukroun, J. Crovisier, B.J.R. Davidsson, P. Encrenaz, T. Encrenaz, M. Frerking, P. Hartogh, M. Hofstadter, W.-H. Ip, M. Janssen, C. Jarchow, S. Keihm, S. Lee, E. Lellouch, C. Leyrat, L. Rezac, F.P. Schloerb, T. Spilker, Subsurface properties and early activity of comet 67p/Churyumov-Gerasimenko. Science 347(6220) (2015). doi:10.1126/science.aaa0709

  • B. Gundlach, J. Blum, A new method to determine the grain size of planetary regolith. Icarus 223(1), 479–492 (2013). doi:10.1016/j.icarus.2012.11.039

    Article  ADS  Google Scholar 

  • J. Hanuš, M. Delbo, J. Ďurech, V. Alí-Lagoa, Thermophysical modeling of asteroids from WISE thermal infrared data significance of the shape model and the pole orientation uncertainties. Icarus 256, 101–116 (2015). doi:10.1016/j.icarus.2015.04.014

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy, 3: correction for macroscopic roughness. Icarus 59(1), 41–59 (1984). doi:10.1016/0019-1035(84)90054-X

    Article  ADS  Google Scholar 

  • S. Hasegawa, T.G. Müller, K. Kawakami, T. Kasuga, T. Wada, Y. Ita, N. Takato, H. Terada, T. Fujiyoshi, M. Abe, Albedo, size, and surface characteristics of Hayabusa-2 sample-return target 162173 1999 JU3 from AKARI and Subaru observations. Publ. Astron. Soc. Jpn. 60(sp2), 399–405 (2008). doi:10.1093/pasj/60.sp2.S399

    Article  ADS  Google Scholar 

  • F. Horz, M. Cintala, Impact experiments related to the evolution of planetary regoliths. Meteorit. Planet. Sci. 32, 179–209 (1997). doi:10.1111/j.1945-5100.1997.tb01259.x

    Article  ADS  Google Scholar 

  • C.J.A. Howett, J.R. Spencer, J. Pearl, M. Segura, Thermal inertia and bolometric bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Ccassini/CIRS measurements. Icarus 206(2), 573–593 (2010). doi:10.1016/j.icarus.2009.07.016

    Article  ADS  Google Scholar 

  • M. Ishiguro, D. Kuroda, S. Hasegawa, M.-J. Kim, Y.-J. Choi, N. Moskovitz, S. Abe, K.-S. Pan, J. Takahashi, Y. Takagi, A. Arai, N. Tokimasa, H.H. Hsieh, J.E. Thomas-Osip, D.J. Osip, M. Abe, M. Yoshikawa, S. Urakawa, H. Hanayama, T. Sekiguchi, K. Wada, T. Sumi, P.J. Tristram, K. Furusawa, F. Abe, A. Fukui, T. Nagayama, D.S. Warjurkar, A. Rau, J. Greiner, P. Schady, F. Knust, F. Usui, T.G. Müller, Optical properties of (162173) 1999 JU3: In preparation for the JAXA Hayabusa 2 sample return mission. Astrophys. J. 792(1), 74 (2014)

    Article  ADS  Google Scholar 

  • S.J. Keihm, M.G. Langseth Jr., Surface brightness temperatures at the Apollo 17 heatflow site: thermal conductivity of the upper 15 cm of regolith, in Proceedings of the 4th Lunar Science Conference, vol. 3 (1973), pp. 1503–1513

    Google Scholar 

  • S. Keihm, F. Tosi, L. Kamp, F. Capaccioni, S. Gulkis, D. Grassi, M. Hofstadter, G. Filacchione, S. Lee, S. Giuppi, M. Janssen, M. Capria, Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus 221(1), 395–404 (2012). doi:10.1016/j.icarus.2012.08.002

    Article  ADS  Google Scholar 

  • S. Keihm, F. Tosi, M.T. Capria, M.C.D. Sanctis, A. Longobardo, E. Palomba, C.T. Russell, C.A. Raymond, Separation of thermal inertia and roughness effects from Dawn/VIR measurements of Vesta surface temperatures in the vicinity of Marcia crater. Icarus 262, 30–43 (2015). doi:10.1016/j.icarus.2015.08.028

    Article  ADS  Google Scholar 

  • S.J. Keihm, Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping. Icarus 60(3), 568–589 (1984). doi:10.1016/0019-1035(84)901659

    Article  ADS  Google Scholar 

  • L. Ksanfomality, S. Murchie, D. Britt, T. Duxbury, P. Fisher, N. Goroshkova, J. Head, E. Kuhrt, V. Moroz, B. Murray, G. Nikitin, E. Petrova, C. Pieters, A. Soufflot, A. Zharkov, B. Zhukov, Phobos: spectrophotometry between 0.3 and 0.6 m and IR-radiometry. Planet. Space Sci. 39(1), 311–326 (1991). doi:10.1016/0032-0633(91)90152-Z

    Article  ADS  Google Scholar 

  • E. Kührt, B. Giese, H.U. Keller, L.V. Ksanfomality, Interpretation of the krfm-infrared measurements of Phobos. Icarus 96(2), 213–218 (1992). doi:10.1016/0019-1035(92)90075-I

    Article  ADS  Google Scholar 

  • L. Ksanfomality, V. Moroz, P. Bibring, M. Combes, A. Soufflot, O. Ganpantzerova, N. Goroshikova, A. Zharkov, G. Nikiti, E. Petrova, Spatial variations in thermal and albedo properties of the surface of Phobos. Nature 341, 588–591 (1989)

    Article  ADS  Google Scholar 

  • J.S.V. Lagerros, Thermal physics of asteroids, I: effects of shape, heat conduction and beaming. Astron. Astrophys. 310, 1011–1020 (1996)

    ADS  Google Scholar 

  • J.S.V. Lagerros, Thermal physics of asteroids, III: irregular shapes and albedo variegations. Astron. Astrophys. 325, 1226–1236 (1997)

    ADS  Google Scholar 

  • J.S.V. Lagerros, Thermal physics of asteroids, IV: thermal infrared beaming. Astron. Astrophys. 332, 1132–1223 (1998)

    Google Scholar 

  • D.S. Lauretta, The OSIRIS-REx team, An overview of the OSIRIS-REx asteroid sample return mission. Lunar Planet. Sci. Conf. Abstr. 43, 2491 (2012)

    ADS  Google Scholar 

  • E. Lellouch, P. Santos-Sanz, P. Lacerda, M. Mommert, R. Duffard, J.L. Ortiz, T.G. Müller, S. Fornasier, J. Stansberry, C. Kiss, E. Vilenius, M. Mueller, N. Peixinho, R. Moreno, O. Groussin, A. Delsanti, A.W. Harris, TNOS are cool: a survey of the trans-Neptunian region. Astron. Astrophys. 557, 60 (2013). doi:10.1051/0004-6361/201322047

    Article  ADS  Google Scholar 

  • E. Lellouch, J. Stansberry, J. Emery, W. Grundy, D.P. Cruikshank, Thermal properties of Plutos and Charons surfaces from spitzer observations. Icarus 214(2), 701–716 (2011). doi:10.1016/j.icarus.2011.05.035

    Article  ADS  Google Scholar 

  • C. Leyrat, A. Coradini, S. Erard, F. Capaccioni, M.T. Capria, P. Drossart, M.C.D. Sanctis, F. Tosi, V. Team, Thermal properties of the asteroid (2867) Steins as observed by Virtis/Rosetta. Astron. Astrophys. 531, 168 (2011). doi:10.1051/0004-6361/201116529

    Article  ADS  Google Scholar 

  • J.L. Linsky, Models of the lunar surface including temperature dependent thermal properties. Icarus 5(16), 606–634 (1966). doi:10.1016/0019-1035(66)90075-3

    Article  ADS  Google Scholar 

  • S.C. Lowry, P.R. Weissman, S.R. Duddy, B. Rozitis, A. Fitzsimmons, S.F. Green, M.D. Hicks, C. Snodgrass, S.D. Wolters, S.R. Chesley, J. Pittichová, P. van Oers, The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up. Astron. Astrophys. 562, 48 (2014). doi:10.1051/00046361/201322602

    Article  ADS  Google Scholar 

  • J.I. Lunine, G. Neugebauer, B.M. Jakosky, Infrared observations of Phobos and Deimos from Viking. J. Geophys. Res., Solid Earth 87(B12), 10297–10305 (1982). doi:10.1029/JB087iB12p10297

    Article  Google Scholar 

  • M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus 148(2), 437–455 (2000). doi:10.1006/icar.2000.6503

    Article  ADS  Google Scholar 

  • N.A. Moskovitz, S. Abe, K.-S. Pan, D.J. Osip, D. Pefkou, M.D. Melita, M. Elias, K. Kitazato, S.J. Bus, F.E. DeMeo, R.P. Binzel, P.A. Abell, Rotational characterization of Hayabusa II target asteroid (162173) 1999 JU3. Icarus 224(1), 24–31 (2013). doi:10.1016/j.icarus.2013.02.009

    Article  ADS  Google Scholar 

  • T.G. Müller, S. Hasegawa, F. Usui, (25143) Itokawa: the power of radiometric techniques for the interpretation of remote thermal observations in the light of the Hayabusa rendezvous results. Publ. Astron. Soc. Jpn. 66, 52 (2014). doi:10.1093/pasj/psu034

    Article  ADS  Google Scholar 

  • T.G. Müller, J.S.V. Lagerros, Asteroids as far-infrared photometric standards for ISOPHOT. Astron. Astrophys. 338, 340–352 (1998)

    ADS  Google Scholar 

  • T.G. Müller, J.S.V. Lagerros, M. Burgdorf, T. Lim, P.M. Morris, A. Salama, B. Schulz, B. Vandenbussche, Fundamental thermal emission parameters of main-belt asteroids derived from ISO. ESA SP 427, 141 (1999)

    ADS  Google Scholar 

  • T.G. Müller, T. Sekiguchi, M. Kaasalainen, M. Abe, S. Hasegawa, Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa. Astron. Astrophys. 443(1), 347–355 (2005). doi:10.1051/00046361:20053862

    Article  ADS  Google Scholar 

  • T.G. Müller, J. Ďurech, S. Hasegawa, M. Abe, K. Kawakami, T. Kasuga, D. Kinoshita, D. Kuroda, S. Urakawa, S. Okumura, Y. Sarugaku, S. Miyasaka, Y. Takagi, P.R. Weissman, Y.-J. Choi, S. Larson, K. Yanagisawa, S. Nagayama, Thermo-physical properties of 162173 (1999JU3), a potential flyby and rendezvous target for interplanetary missions. Astron. Astrophys. 525, 145 (2011). doi:10.1051/0004-6361/201015599

    Article  Google Scholar 

  • T. Okada et al., Space Sci. Rev., this issue (2015)

  • C.P. Opeil, G.J. Consolmagno, D.T. Britt, The thermal conductivity of meteorites: new measurements and analysis. Icarus 208(1), 449–454 (2010). doi:10.1016/j.icarus.2010.01.021

    Article  ADS  Google Scholar 

  • L. O’Rourke, T.G. Müller, I. Valtchanov, B. Altieri, B.M. González-Garcia, B. Bhattacharya, L. Jorda, B. Carry, M. Küppers, O. Groussin, K. Altwegg, M.A. Barucci, D. Bockelee-Morvan, J. Crovisier, E. Dotto, P. Garcia-Lario, M. Kidger, A. Llorente, R. Lorente, A.P. Marston, M. Sanchez Portal, R. Schulz, M. Sierra, D. Teyssier, R. Vavrek, Thermal and shape properties of asteroid (21) Lutetia from Herschel observations around the Rosetta flyby. Planet. Space Sci. 66(1), 192–199 (2012). doi:10.1016/j.pss.2012.01.004

    Article  ADS  Google Scholar 

  • D.A. Paige, M.C. Foote, B.T. Greenhagen, J.T. Schofield, S. Calcutt, A.R. Vasavada, D.J. Preston, F.W. Taylor, C.C. Allen, K.J. Snook, B.M. Jakosky, B.C. Murray, L.A. Soderblom, B. Jau, S. Loring, J. Bulharowski, N.E. Bowles, I.R. Thomas, M.T. Sullivan, C. Avis, E.M. De Jong, W. Hartford, D.J. McCleese, The Lunar reconnaissance orbiter diviner Lunar radiometer experiment. Space Sci. Rev. 150(1), 125–160 (2010). doi:10.1007/s11214-009-9529-2

    Article  ADS  Google Scholar 

  • N.E. Putzig, M.T. Mellon, K.A. Kretke, R.E. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173(2), 325–341 (2005). doi:10.1016/j.icarus.2004.08.017

    Article  ADS  Google Scholar 

  • J.A. Rathbun, J.R. Spencer, L.K. Tamppari, T.Z. Martin, L. Barnard, L.D. Travis, Mapping of Io’s thermal radiation by the Galileo photopolarimeterradiometer (PPR) instrument. Icarus 169(1), 127–139 (2004). Special Issue: Io after Galileo. doi:10.1016/j.icarus.2003.12.021

    Article  ADS  Google Scholar 

  • B. Rozitis, S.F. Green, Directional characteristics of thermal infrared beaming from atmosphereless planetary surfaces a new thermophysical model. Mon. Not. R. Astron. Soc. 415(3), 2042–2062 (2011). doi:10.1111/j.1365-2966.2011.18718.x

    Article  ADS  Google Scholar 

  • J.R. Spencer, The surfaces of Europa, Ganymede, and Callisto: an investigation using Voyager Iris thermal infrared spectra (Jupiter) (1987). http://hdl.handle.net/10150/184098

  • J.R. Spencer, A rough-surface thermophysical model for airless planets. Icarus 83(1), 27–38 (1990). doi:10.1016/0019-1035(90)90004-S

    Article  ADS  Google Scholar 

  • J.R. Spencer, L.A. Lebofsky, M.V. Sykes, Systematic biases in radiometric diameter determinations. Icarus 78(2), 337–354 (1989). doi:10.1016/0019-1035(89)90182-6

    Article  ADS  Google Scholar 

  • J.R. Spencer, L.K. Tamppari, T.Z. Martin, L.D. Travis, Temperatures on Europa from Galileo photopolarimeterradiometer: nighttime thermal anomalies. Science 284(5419), 1514–1516 (1999). doi:10.1126/science.284.5419.1514

    Article  ADS  Google Scholar 

  • T. Spohn, J. Knollenberg, A.J. Ball, M. Banaszkiewicz, J. Benkhoff, M. Grott, J. Grygorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K.J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin, Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science 349(6247) (2015). doi:10.1126/science.aab0464

  • S.A. Stern, F. Bagenal, K. Ennico, G.R. Gladstone, W.M. Grundy, W.B. McKinnon, J.M. Moore, C.B. Olkin, J.R. Spencer, H.A.L.A. Weaver Young, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, R.A. Beyer, S. Bhaskaran, R.P. Binzel, E. Birath, M. Bird, D.J. Bogan, A. Bowman, V.J. Bray, M. Brozovic, C. Bryan, M.R. Buckley, M.W. Buie, B.J. Buratti, S.S. Bushman, A. Calloway, B. Carcich, A.F. Cheng, S. Conard, C.A. Conrad, J.C. Cook, D.P. Cruikshank, O.S. Custodio, C.M.D. Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, T. Greathouse, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, D.P. Hinson, M.E. Holdridge, M. Horanyi, A.D. Howard, C.J.A. Howett, C. Jackman, R.A. Jacobson, D.E. Jennings, J.A. Kammer, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, T.R. Lauer, J.E. Lee, K.L. Lindstrom, I.R. Linscott, C.M. Lisse, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, F. Nimmo, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, A.H. Parker, J.W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S.B. Porter, S. Protopapa, J. Redfern, H.J. Reitsema, D.C. Reuter, J.H. Roberts, S.J. Robbins, G. Rogers, D. Rose, K. Runyon, K.D. Retherford, M.G. Ryschkewitsch, P. Schenk, E. Schindhelm, B. Sepan, M.R. Showalter, K.N. Singer, M. Soluri, D. Stanbridge, A.J. Steffl, D.F. Strobel, T. Stryk, M.E. Summers, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, H.B. Throop, C.C.C. Tsang, G.L. Tyler, O.M. Umurhan, A.J. Verbiscer, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, O.L. White, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, W.W. Woods, A.M. Zangari, E. Zirnstein, The Pluto system: initial results from its exploration by new horizons. Science 350(6258) (2015). doi:10.1126/science.aad1815

  • Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa 2 asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013). doi:10.1016/j.actaastro.2013.06.028

    Article  ADS  Google Scholar 

  • A.R. Vasavada, J.L. Bandfield, B.T. Greenhagen, P.O. Hayne, M.A. Siegler, J.-P. Williams, D.A. Paige, Lunar equatorial surface temperatures and regolith properties from the diviner Lunar radiometer experiment. J. Geophys. Res., Planets 117(E12), E00H18 (2012). doi:10.1029/2011JE003987

    Google Scholar 

  • F. Vilas, Spectral characteristics of Hayabusa 2 near-Earth asteroid targets 162173 1999 JU3 and 2001 QC34. Astron. J. 135(4), 1101 (2008)

    Article  ADS  Google Scholar 

  • D. Vokrouhlický, A. Milani, S.R. Chesley, Yarkovsky effect on small near-Earth asteroids: mathematical formulation and examples. Icarus 148(1), 118–138 (2000). doi:10.1006/icar.2000.6469

    Article  ADS  Google Scholar 

  • K. Yomogida, T. Matsui, Physical properties of ordinary chondrites. J. Geophys. Res., Solid Earth 88(B11), 9513–9533 (1983). doi:10.1029/JB088iB11p09513

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous reviewers whose comments and suggestions helped improve this manuscript. We also thank Sunao Hasegawa for helpful discussion of this work about thermal modelings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Takita.

Appendix A: Mathematical Description of the Imaging Simulation

Appendix A: Mathematical Description of the Imaging Simulation

We now describe mathematical implementations for simulating TIR images. In this procedure, we calculated the components of the spin vector in the imaging coordinate system to determine the asteroid’s local equatorial longitude and latitude, which are combined with the reference point of the sub-solar point.

The base vectors of the imaging coordinate system \((x',y',z')\) are defined based on the heliocentric ecliptic coordinates of the asteroid \((x_{A},y_{A},z_{A})\) and the earth \((x_{E},y_{E},z_{E})\), which are given by (see Fig. 3)

$$\begin{aligned} \boldsymbol{e}'_{z} =& \left[ \textstyle\begin{array}{c} (x_{E} - x_{A})/| EA | \\ (y_{E} - y_{A})/| EA | \\ (z_{E} - z_{A})/| EA | \end{array}\displaystyle \right] , \end{aligned}$$
(17)
$$\begin{aligned} \boldsymbol{e}'_{x} =& \left[ \textstyle\begin{array}{c} - (y_{E} - y_{A})/| EA' | \\ (x_{E} - x_{A})/| EA' | \\ 0 \end{array}\displaystyle \right], \end{aligned}$$
(18)
$$\begin{aligned} \boldsymbol{e}'_{y} =& \boldsymbol{e}'_{z} \times \boldsymbol{e}'_{x}, \end{aligned}$$
(19)

where

$$\begin{aligned} | EA | =& \sqrt{(x_{E} - x_{A})^{2} + (y_{E} - y_{A})^{2} + (z_{E} - z_{A})^{2}}, \end{aligned}$$
(20)
$$\begin{aligned} | EA' | =& \sqrt{(y_{E} - y_{A})^{2} + (x_{E} - x_{A})^{2}}. \end{aligned}$$
(21)

The spin vector of the asteroid in the imaging coordinates is given by

$$ \boldsymbol{\mathit{spin}}' = (\boldsymbol{\mathit{spin}} \cdot \boldsymbol{e}'_{x})\boldsymbol{e}'_{x} + (\boldsymbol{\mathit{spin}} \cdot \boldsymbol{e}'_{y})\boldsymbol{e}'_{y} + (\boldsymbol{\mathit{spin}} \cdot \boldsymbol{e}'_{z})\boldsymbol{e}'_{z} , $$
(22)

where

$$ \boldsymbol{\mathit{spin}} = \left[ \textstyle\begin{array}{c} \cos \beta_{\mathrm{ecl}}\cos \lambda_{\mathrm{ecl}} \\ \cos \beta_{\mathrm{ecl}}\sin \lambda_{\mathrm{ecl}} \\ \sin \beta_{\mathrm{ecl}} \end{array}\displaystyle \right] . $$
(23)

We obtain the components of spin vector in the imaging coordinate system:

$$\begin{aligned} \lambda '_{\mathrm{ecl}} =& \tan^{ - 1}\frac{\mathit{spin}'_{z}}{\mathit{spin}'_{x}} , \end{aligned}$$
(24)
$$\begin{aligned} \beta '_{\mathrm{ecl}} =& \tan^{ - 1}\frac{\sqrt{(\mathit{spin}'_{x})^{2} + (\mathit{spin}'_{z})^{2}}}{\mathit{spin}'_{y}} . \end{aligned}$$
(25)

The longitude of the prime meridian is defined so as to coincide with the sub-solar longitude in the asteroid-centric coordinate system (Fig. 13). Sub-solar longitude and latitude are defined as follows, including the orbital position of a planet:

$$\begin{aligned} \phi '_{\mathrm{SSP}} =& \tan^{ - 1}\frac{\mathit{ssp}'_{z}}{\mathit{ssp}'_{x}} , \end{aligned}$$
(26)
$$\begin{aligned} \theta '_{\mathrm{SSP}} =& \tan^{ - 1}\frac{\sqrt{(\mathit{ssp}'_{x})^{2} + (\mathit{ssp}'_{z})^{2}}}{\mathit{ssp}'_{y}} , \end{aligned}$$
(27)

where the sub-solar vector expressed in \((x',y',z')\) system is

$$ \boldsymbol{\mathit{ssp}}' = (\boldsymbol{\mathit{ssp}} \cdot \boldsymbol{e}'_{x})\boldsymbol{e}'_{x} + (\boldsymbol{\mathit{ssp}} \cdot \boldsymbol{e}'_{y})\boldsymbol{e}'_{y} + (\boldsymbol{\mathit{ssp}} \cdot \boldsymbol{e}'_{z})\boldsymbol{e}'_{z} $$
(28)

and the normalized vector of sub-solar point expressed in \((x,y,z)\) system is

$$ \boldsymbol{\mathit{ssp}} = \left[ \textstyle\begin{array}{c} - x_{A}/r \\ - y_{A}/r \\ - z_{A}/r \end{array}\displaystyle \right] , $$
(29)

where

$$ r = \sqrt{x_{A}^{2} + y_{A}^{2} + z_{A}^{2}} . $$
(30)
Fig. 13
figure 13

Definition of the prime meridian in the imaging coordinate system

The view seen from the direction of the spacecraft camera is made by projecting the 3D coordinates of asteroid in \((x',y',z')\) to a rendering plane \(x'y'\). We redefine the \(x'y'\) plane as a \(XY\) plane for simple representation of symbols.

The 2D components are given by

$$\begin{aligned} \left[ \textstyle\begin{array}{c} X \\ Y \end{array}\displaystyle \right] =& \left[ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\displaystyle \right] \left[ \textstyle\begin{array}{c} x' \\ y' \\ z' \end{array}\displaystyle \right], \quad z' \ge 0 \end{aligned}$$
(31)
$$\begin{aligned} \left[ \textstyle\begin{array}{c} x' \\ y' \\ z' \end{array}\displaystyle \right] =& \left[ \textstyle\begin{array}{c} R\sin \theta '\cos \phi ' \\ R\cos \theta ' \\ R\sin \theta '\sin \phi ' \end{array}\displaystyle \right] \equiv R \boldsymbol{\mathit{vec}}(\theta ',\phi ') \end{aligned}$$
(32)

where \(R\) is the radius of the target asteroid.

The asteroid-centric equatorial latitude \(\varTheta\) and longitude \(\varPhi\) at \((X, Y)\), where \(X^{2} + Y^{2} < R^{2}\) is satisfied in the image coordinate, are calculated based on the definition of the projected plane in imaging coordinates and the radius of the target asteroid:

$$\begin{aligned} \varTheta =& \frac{\pi}{2} - \cos^{ - 1}(\boldsymbol{p} \cdot \boldsymbol{q}), \end{aligned}$$
(33)
$$\begin{aligned} \varPhi =& \left\{ \textstyle\begin{array}{l@{\quad}l} \cos^{ - 1}\frac{(\boldsymbol{p} \times \boldsymbol{s}) \cdot (\boldsymbol{p} \times \boldsymbol{q})}{| \boldsymbol{p} \times \boldsymbol{s} | \| \boldsymbol{p} \times \boldsymbol{q} |} &\mbox{for}\ (\boldsymbol{p} \times \boldsymbol{s}) \cdot \boldsymbol{q} \ge 0 ,\\ - \cos^{ - 1}\frac{(\boldsymbol{p} \times \boldsymbol{s}) \cdot (\boldsymbol{p} \times \boldsymbol{q})}{| \boldsymbol{p} \times \boldsymbol{s} | | \boldsymbol{p} \times \boldsymbol{q} |} &\mbox{for}\ (\boldsymbol{p} \times \boldsymbol{s}) \cdot \boldsymbol{q} < 0, \end{array}\displaystyle \right. \end{aligned}$$
(34)

where

$$\begin{aligned} \boldsymbol{p} =& \boldsymbol{\mathit{vec}}(\beta '_{\mathrm{ecl}},\lambda '_{\mathrm{ecl}}), \end{aligned}$$
(35)
$$\begin{aligned} \boldsymbol{s} =& \boldsymbol{\mathit{vec}}(\theta '_{\mathrm{SSP}},\phi '_{\mathrm{SSP}}) \end{aligned}$$
(36)

and

$$ \boldsymbol{q} = \frac{1}{R}\left[ \textstyle\begin{array}{c} X \\ Y \\ \sqrt{R^{2} - X^{2} - Y^{2}} \end{array}\displaystyle \right] . $$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takita, J., Senshu, H. & Tanaka, S. Feasibility and Accuracy of Thermophysical Estimation of Asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 Thermal Infrared Imager. Space Sci Rev 208, 287–315 (2017). https://doi.org/10.1007/s11214-017-0336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0336-x

Keywords

Navigation