Skip to main content
Log in

The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield (The InSight Team), InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference, vol. 44 (2013), p. 1915

    Google Scholar 

  • W.B. Banerdt et al., Insight. Space Sci. Rev. (2016, this issue)

  • P.N. Desai, J.L. Prince, E.M. Queen, M.M. Schoenenberger, J.R. Cruz, M.R. Grover, Entry, descent, and landing performance of the mars phoenix lander. J. Spacecr. Rockets 48(5), 798–808 (2011)

    Article  ADS  Google Scholar 

  • R. Fleischner, InSight instrument deployment arm. ESMAT, http://www.esmats.eu/esmatspapers/pastpapers/pdfs/2013/fleischner.pdf (2013)

  • M. Golombek, D. Kipp, N. Warner, I. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G.A. Morgan, C. Constantinos, T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2016, this issue)

  • M. Grott, Thermal disturbances caused by lander shadowing and the measurability of the martian planetary heat flow. Planet. Space Sci. 57(1), 71–77 (2009)

    Article  ADS  Google Scholar 

  • M. Grott, J. Helbert, R. Nadalini, The thermal structure of Martian soil and the measurability of the planetary heat flow. J. Geophys. Res. 112, E09004 (2007)

    ADS  Google Scholar 

  • M. Grott, J. Knollenberg, C. Krause, The Apollo Lunar heat flow experiment revisited: a critical reassessment of the in-situ thermal conductivity determination. J. Geophys. Res. 115, E11005 (2010)

    Article  ADS  Google Scholar 

  • W.S. Kiefer, Lunar heat flow experiments: science objectives and a strategy for minimizing the effects of lander-induced perturbations. Planet. Space Sci. 60(1), 155–165 (2012)

    Article  ADS  Google Scholar 

  • H.H. Kieffer, Thermal model for analysis of Mars infrared mapping. J. Geophys. Res., Planets 118(3), 451–470 (2013)

    Article  ADS  Google Scholar 

  • M.G. Langseth, S.J. Keihm, K. Peters, Revised lunar heat-flow values, in Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3143–3171

    Google Scholar 

  • M.J. Ledlow, J.O. Burns, G.A. Gisler, J.-H. Zhao, M. Zeilik, D.N. Baker, Subsurface emissions from Mercury: VLA radio observations at 2 and 6 centimeters. Astrophys. J. 384, 640–655 (1992)

    Article  ADS  Google Scholar 

  • M.T. Lemmon, M.J. Wolff, J.F. Bell, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars exploration rover mission. Icarus 251, 96–111 (2015)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Planetary seismology—expectations for lander and wind noise with application to Venus. Planet. Space Sci. 62(1), 86–96 (2012)

    Article  ADS  Google Scholar 

  • D. Mimoun, P. Lognonné, D. Giardini, W.T. Pike, U. Christensen, A. van den Berg, P. Schibler (Team), The SEIS experiment: a planetary seismometer for Mars... and the Moon, in Lunar and Planetary Science Conference, vol. 38 (2007), p. 2204

    Google Scholar 

  • N. Mueller, E. Kopp, I. Walter, M. Grott, J. Knollenberg, M. Siegler, S. Smrekar, F. Hänschke, E. Kessler, T. Spohn, The HP3 radiometer for the InSight mission, in 45th Lunar and Planetary Science Conference (2014), p. 2375

    Google Scholar 

  • M.D. Paton, A.M. Harri, H. Savijärvi, T. Mäkinen, A. Hagermann, O. Kemppinen, A. Johnston, Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site. Icarus 271, 360–374 (2016)

    Article  ADS  Google Scholar 

  • S. Piqueux, P.R. Christensen, A model of thermal conductivity for planetary soils: 1. Theory for unconsolidated soils. J. Geophys. Res., Planets 114(E9), E09005 (2009)

    ADS  Google Scholar 

  • A.C. Plesa, M. Grott, M. Lemmon, N. Mueller, S. Piqueux, M. Siegler, S. Smrekar, T. Spohn, Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations. J. Geophys. Res., Planets 121(10), 2166–2175 (2016)

    Article  ADS  Google Scholar 

  • M.A. Presley, P.R. Christensen, The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. J. Geophys. Res., Planets 102(E4), 9221–9229 (1997)

    Article  ADS  Google Scholar 

  • J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997)

    Article  ADS  Google Scholar 

  • M.A. Siegler, D.A. Paige, S.J. Keihm, A.R. Vasavada, R.R. Ghent, J.L. Bandfield, K.J. Snook, Apollo lunar heat flow experiments and the LRO diviner radiometer, in 41st Lunar and Planetary Science Conference (2010), p. 2650

    Google Scholar 

  • M.A. Siegler, B.G. Bills, D.A. Paige, Effects of orbital evolution on lunar ice stability. J. Geophys. Res., Planets 116(E3), E03010 (2011)

    Article  ADS  Google Scholar 

  • M.R. Sims et al., Beagle 2: a proposed exobiology lander for ESA’s 2003 Mars express mission. Adv. Space Res. 23(11), 1925–1928 (1999)

    Article  ADS  Google Scholar 

  • T. Spohn et al., INSIGHT: measuring the Martian heat flow using the heat flow and physical properties package (HP3). LPI Contrib. 1683, 1124 (2012)

    ADS  Google Scholar 

  • W.R. Ward, Climatic variations on Mars: 1. Astronomical theory of insolation. J. Geophys. Res. 79, 3375–3386 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the InSight Project for support leading to these efforts and thank the reviewers for their helpful suggestions and corrections. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This paper is InSight Contribution Number (ICN) 13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Siegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegler, M.A., Smrekar, S.E., Grott, M. et al. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment. Space Sci Rev 211, 259–275 (2017). https://doi.org/10.1007/s11214-017-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0331-2

Keywords

Navigation