Skip to main content
Log in

Using OpenGGCM to Compute and Separate Magnetosphere Magnetic Perturbations Measured on Board Low Earth Orbiting Satellites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We use Open Geospace General Circulation Model (OpenGGCM) simulations to predict magnetic field perturbations at Low Earth Orbiting (LEO) satellites such as Swarm, at high latitudes. The simulations allow us to separate three different major contributions to the observed perturbations, i.e., the perturbations caused by currents in the outer magnetosphere, field-aligned currents (FACs), and the currents flowing in the ionosphere. We find that at an altitude of 500 km the strongest contribution comes from FACs, followed by the perturbations caused by the ionospheric currents, while the magnetospheric currents make only a minor contribution. The high latitude perturbations do not average out over extended quiet time periods. There are significant variations in the patterns; however, on a large scale, the basic shape of the pattern remains stable. Thus, without explicitly removing the perturbations from the data, any spherical harmonics fit is expected to incur a bias. Although the predicted OpenGGCM perturbations do not compare particularly well with Swarm data, the simulations reproduce the overall pattern. However, they may still be useful to reduce the bias of the ensemble and produce better global spherical harmonic fits, by producing an ensemble whose external field contributions average out. Since this paper only scratches the surface of the role that models of the external field can play in producing unbiased internal field models, much progress is still possible, for example by improving the external model, investigating larger ensembles, and by considering data from geomagnetically disturbed times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • B.J. Anderson, H. Korth, C.L. Waters, D.L. Green, P. Stauning, Statistical Birkeland current distributions from magnetic field observations by the iridium constellation. Ann. Geophys. 26, 671–687 (2008)

    Article  ADS  Google Scholar 

  • V. Angelopoulos et al., Tail reconnection triggering substorm onset. Science 321, 931 (2008)

    Article  ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12,975 (1996)

    Article  ADS  Google Scholar 

  • J. Berchem, J. Raeder, M. Ashour-Abdalla, Magnetic flux ropes at the high-latitude magnetopause. Geophys. Res. Lett. 22, 1189 (1995)

    Article  ADS  Google Scholar 

  • J.U. Brackbill, D.C. Barnes, The effect of nonzero div B on the numerical solution of the magnetohydrodynamic equations. J. Comp. Physiol. 35, 426 (1980)

    Article  ADS  MATH  Google Scholar 

  • J.C. Dorelli, A. Bhattacharjee, J. Raeder, Separator reconnection at Earth’s dayside magnetopause under generic northward interplanetary magnetic field conditions. J. Geophys. Res. 112, 1 (2007). doi:10.1029/2006JA011877

    Google Scholar 

  • C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659 (1988)

    Article  ADS  Google Scholar 

  • J.A. Fedder, J.G. Lyon, The solar wind–magnetosphere–ionosphere current–voltage relationship. Geophys. Res. Lett. 14, 880 (1987)

    Article  ADS  Google Scholar 

  • C.C. Finlay et al., International geomagnetic reference field: the eleventh generation. Geophys. J. Int. 183, 1216–1230 (2010)

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, G.H. Millward, A coupled thermosphere–ionosphere model (CTIM), in STEP Report, ed. by R.W. Schunk. Scientific Committee on Solar Terrestrial Physics (SCOSTEP) (NOAA/NGDC, Boulder, 1996), p. 217

    Google Scholar 

  • Y.S. Ge, J. Raeder, V. Angelopoulos, M.L. Gilson, A. Runov, Interaction of dipolarization fronts within multiple bursty bulk flows in global MHD simulations of a substorm on 27 February 2009. J. Geophys. Res. 116, A00I23 (2011)

    Article  ADS  Google Scholar 

  • A. Harten, G. Zwas, Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9, 568 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Hirsch, Numerical Computation of Internal and External Flow, vol. II (Wiley, New York, 1990)

    Google Scholar 

  • T. Ijima, T.A. Potemra, Field-aligned currents in the day side cusp observed by Triad. J. Geophys. Res. 81, 5971 (1976)

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere (Academic Press, New York, 1989)

    Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1972)

    Article  ADS  Google Scholar 

  • C.B. Laney, Computational Gasdynamics (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  • G. Le, J. Raeder, C.T. Russell, G. Lu, S.M. Petrinec, F.S. Mozer, Polar cusp and vicinity under strongly northward IMF on April 11, 1997: observations and MHD simulations. J. Geophys. Res. 106, 21,083 (2001)

    Article  ADS  Google Scholar 

  • W. Li, J. Raeder, J.C. Dorelli, M. Thomsen, B. Lavraud, Solar wind entry into the magnetosphere under northward IMF conditions. J. Geophys. Res. 113, A04204 (2008)

    Article  ADS  Google Scholar 

  • W. Li, J. Raeder, M. Øieroset, T.D. Phan, Cold dense magnetopause boundary layer under northward IMF: results from THEMIS and MHD simulations. J. Geophys. Res. 114, A00C15 (2009). doi:10.1029/2008JA013497497

    ADS  Google Scholar 

  • W. Li, D. Knipp, J. Lei, J. Raeder, The relationship between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res. 116, A08301 (2011). doi:10.1029/2011JA016566

    ADS  Google Scholar 

  • A.T.Y. Lui, Extended consideration of a synthesis model for magnetic substorms, in Magnetospheric Substorms, ed. by J.R. Kan, T.A. Potemra, S. Kokubun, T. Ijima. AGU Monogr. Ser., vol. 64 (Am. Geophys. Union, Washington, 1991), p. 43

    Chapter  Google Scholar 

  • R.L. McPherron, Physical processes producing magnetospheric substorms and magnetic storms, in Geomagnetism, vol. 4, ed. by J. Jacobs (Academic Press, San Diego, 1991), p. 593

    Chapter  Google Scholar 

  • R.L. McPherron, The role of substorms in the generation of magnetic storms, in Magnetic Storms, ed. by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. AGU Monogr. Ser., vol. 98 (Am. Geophys. Union, Washington, 1997), p. 131

    Chapter  Google Scholar 

  • R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968, 9. Phenomenological model for substorms. J. Geophys. Res. 78, 3131 (1973)

    Article  ADS  Google Scholar 

  • T. Moretto, S. Vennerstrom, N. Olsen, L. Rastaetter, J. Raeder, Using global magnetospheric models for simulation and interpretation of Swarm external field measurements. Earth Planets Space 58, 439–449 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Orsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, C. Stolle, Space Sci. Rev. (2016). doi:10.1007/s11214-016-0279-7

    Google Scholar 

  • A. Pulkkinen et al., Geospace environment modeling 2008–2009 challenge: ground magnetic field perturbations. Space Weather S02, 004 (2011)

    Google Scholar 

  • A. Pulkkinen et al., Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather 11, 369 (2013). doi:10.1002/swe.20056

    Article  ADS  Google Scholar 

  • J. Raeder, Global Magnetohydrodynamics—A Tutorial, in Space Plasma Simulation, ed. by J. Büchner, C.T. Dum, M. Scholer (Springer, Berlin/Heidelberg/New York, 2003)

    Google Scholar 

  • J. Raeder, Flux transfer events: 1. Generation mechanism for strong southward IMF. Ann. Geophys. 24, 381 (2006)

    Article  ADS  Google Scholar 

  • J. Raeder, J. Berchem, M. Ashour-Abdalla, The importance of small scale processes in global MHD simulations: some numerical experiments, in The Physics of Space Plasmas, vol. 14, ed. by T. Chang, J.R. Jasperse (MIT Cent. for Theoret. Geo/Cosmo Plasma Phys., Cambridge, 1996), p. 403

    Google Scholar 

  • J. Raeder, J. Berchem, M. Ashour-Abdalla, The geospace environment modeling grand challenge: results from a global geospace circulation model. J. Geophys. Res. 103, 14,787 (1998)

    Article  ADS  Google Scholar 

  • J. Raeder, O. Vaisberg, V. Smirnov, L. Avanov, Reconnection driven lobe convection: interball tail probe observations and global simulations. J. Atmos. Sol.-Terr. Phys. 62, 833 (2000)

    Article  ADS  Google Scholar 

  • J. Raeder, Y.L. Wang, T.J. Fuller-Rowell, Geomagnetic storm simulation with a coupled magnetosphere–ionosphere–thermosphere model, in Space Weather, AGU Geophys. Monogr. Ser., vol. 125, ed. by P. Song, G. Siscoe, H.J. Singer (Am. Geophys. Union, Washington, 2001a), p. 377

    Google Scholar 

  • J. Raeder, Y.L. Wang, T.J. Fuller-Rowell, H.J. Singer, Global simulation of space weather effects of the Bastille Day storm. Sol. Phys. 204, 325 (2001b)

    Article  ADS  Google Scholar 

  • J. Raeder, D. Larson, W. Li, E.L. Kepko, T. Fuller-Rowell, OpenGGCM simulations for the THEMIS mission. Space Sci. Rev. 141, 535 (2008)

    Article  ADS  Google Scholar 

  • J. Raeder, P. Zhu, Y. Ge, G.L. Siscoe, OpenGGCM simulation of a substorm: axial tail instability and ballooning mode preceding substorm onset. J. Geophys. Res. 115, A00l16 (2010)

    Article  Google Scholar 

  • J. Raeder, P. Zhu, Y. Ge, Auroral signatures of ballooning mode near substorm onset: OpenGGCM simulations, in Auroral Phenomenology and Magnetospheric Processes: Earth and other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Geophysical Monograph, vol. 197 (2012), pp. 389–395

    Chapter  Google Scholar 

  • L. Rastaetter, M. Hesse, M. Kuznetsova, J.B. Sigwarth, J. Raeder, T.I. Gombosi, Polar cap size during 14–16 July 2000 (Bastille Day) solar coronal mass ejection event: MHD modeling and satellite imager observations. J. Geophys. Res. 110, A07212 (2005). doi:10.1029/2004JA010672

    ADS  Google Scholar 

  • L. Rastatter et al., Geospace environment modeling 2008–2009 challenge: Dst index. Space Weather 11, 187 (2013). doi:10.1002/swe.20036

    Article  ADS  Google Scholar 

  • H. Rishbeth, W. Deng, R.G. Roble, T.L. Killeen, A.G. Burns, The flywheel effect: ionospheric currents after a geomagnetic storm. Geophys. Res. Lett. 18, 1845 (1991)

    Article  ADS  Google Scholar 

  • P. Ritter, H. Lühr, S. Maus, A. Viljanen, High-latitude ionospheric currents during very quiet times: their characteristics and predictability. Ann. Geophys. 22 2001 (2004)

    Article  ADS  Google Scholar 

  • G. Rostoker, Effects of substorms on the stormtime ring current index \(\mathit{Dst}\). Ann. Geophys. 18, 1390–1398 (2000)

    Article  ADS  Google Scholar 

  • C.T. Russell, Y.L. Wang, J. Raeder, The interplanetary shock of September 24, 1998: arrival at Earth. J. Geophys. Res. 105, 25,143 (2001)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, L.J. Cahill, Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171 (1967)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, L.J. Cahill, Explorer 12 observations of the magnetopause current layer. J. Geophys. Res. 73, 1757 (1968)

    Article  ADS  Google Scholar 

  • R.J. Strangeway, J. Raeder, On the transition from collisionless to collisional magnetohydrodynamics. J. Geophys. Res. 106, 1955 (2001)

    Article  ADS  Google Scholar 

  • G. Toth, The \(\nabla{\cdot} B\) constraint in shock-capturing magnetohydrodynamics codes. J. Comp. Physiol. 161, 605 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.M. Vasyliunas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere (Reidel, Dordrecht, 1970), p. 61

    Google Scholar 

  • V.M. Vasyliunas, Electrodynamics of the ionosphere/magnetosphere/solar wind system at high latitudes, in NATO Advanced Studies Inst., Lillehammer (1988)

    Google Scholar 

  • S. Vennerstrom, T. Moretto, L. Rastaetter, J. Raeder, Field-aligned currents during northward interplanetary field: morphology and causes. J. Geophys. Res. 110, A06205 (2005). doi:10.1029/2004JA010802

    Article  ADS  Google Scholar 

  • S. Vennerstrom, T. Moretto, L. Rastaetter, J. Raeder, Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field. Earth Planets Space 58, 451–461 (2006)

    Article  ADS  Google Scholar 

  • D.R. Weimer, An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. 106, 407 (2001)

    Article  ADS  Google Scholar 

  • R.A. Wolf, The quasi-static (slow flow) region of the magnetosphere, in Solar Terrestrial Physics, ed. by R.L. Carovillano, J.M. Forbes (Reidel, Hingham, 1983), p. 303

    Chapter  Google Scholar 

  • S.T. Zalesak, Fully multidimensional flux-corrected transport. J. Comp. Physiol. 31, 355 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  • S.T. Zalesak, Very high order pseudospectral flux-corrected transport (FCT) algorithms for conservation laws, in Proceedings of the Fourth IMACS International Symposium on Computer Methods for Partial Differential Equations, ed. by R. Vichnevetsky, R.S. Stepleman (IMACS, Rutgers University, New Brunswick, 1981), p. 126

    Google Scholar 

  • P. Zhu, J. Raeder, C.C. Hegna, C.R. Sovinec, Nature of axial tail instability and bubble-blob formation in near-Earth plasma sheet. J. Geophys. Res. 118, 1–11 (2013). doi:10.1029/2012JA017972

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the conveners of the ISSI workshop Earth Magnetic Field: Understanding Sources from the Earth’s Interior and its Environment Claudia Stolle, Nils Olsen, Art Richmond, and Hermann Opgenoorth, who inspired this research. The work at UNH was funded through grant AGS-1143895 from the National Science Foundation, and NASA/LWS grant NNX13AK31G. Computations were performed on Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI program under grant PHY-1229408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Raeder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeder, J., Cramer, W.D., Germaschewski, K. et al. Using OpenGGCM to Compute and Separate Magnetosphere Magnetic Perturbations Measured on Board Low Earth Orbiting Satellites. Space Sci Rev 206, 601–620 (2017). https://doi.org/10.1007/s11214-016-0304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0304-x

Keywords

Navigation