Skip to main content
Log in

Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Earth’s magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh–Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric \(E\) and \(F\) regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • M.A. Abdu, J.A. Bittencourt, I.S. Batista, Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J. Geophys. Res. 86, 11,443–11,446 (1981)

    Article  ADS  Google Scholar 

  • P. Alken, S. Maus, A.D. Richmond, A. Maute, The ionospheric gravity and diamagnetic current systems. J. Geophys. Res. 116, A12316 (2011). doi:10.1029/2011JA017126

    Article  ADS  Google Scholar 

  • P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. 121, 589–601 (2016). doi:10.1002/2015JA022163

    Article  Google Scholar 

  • H.C. Aveiro, D.L. Hysell, Three-dimensional numerical simulation of equatorial \(F\) region plasma irregularities with bottomside shear flow. J. Geophys. Res. 115, A11321 (2010). doi:10.1029/2010JA015602

    ADS  Google Scholar 

  • H.C. Aveiro, D.L. Hysell, J. Park, H. Lühr, Equatorial spread \(F\)-related currents: three-dimensional simulations and observations. Geophys. Res. Lett. 38, L21103 (2011). doi:10.1029/2011GL049586

    Article  ADS  Google Scholar 

  • R. Behnke, \(F\) layer height bands in the nocturnal ionosphere over Arecibo. J. Geophys. Res. 84, 974–978 (1979)

    Article  ADS  Google Scholar 

  • H.G. Booker, H.W. Wells, Scattering of radio waves by the \(F\)-region of the ionosphere. J. Geophys. Res. 43, 249–256 (1938)

    Article  ADS  Google Scholar 

  • G.G. Bowman, A review of some recent work on mid-latitude spread-\(F\). J. Geomagn. Geoelectr. 42, 109–138 (1990)

    Article  ADS  Google Scholar 

  • A. Bhattacharyya, Role of \(E\) region conductivity in the development of equatorial ionospheric plasma bubbles. Geophys. Res. Lett. 31, L06806 (2004). doi:10.1029/2003GL018960

    Article  ADS  Google Scholar 

  • A. Bhattacharyya, W.J. Burke, A transmission line analogy for the development of equatorial ionospheric bubbles. J. Geophys. Res. 105, 24941–24950 (2000)

    Article  ADS  Google Scholar 

  • W.J. Burke, L.C. Gentile, C.Y. Huang, C.E. Valladares, S.Y. Su, Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res. 109, A12301 (2004). doi:10.1029/2004JA010583

    Article  ADS  Google Scholar 

  • J.W. Dungey, Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys. 9, 304–310 (1956)

    Article  ADS  Google Scholar 

  • J.T. Emmert, A.D. Richmond, D.P. Drob, A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res. 115, A08322 (2010). doi:10.1029/2010JA015326

    ADS  Google Scholar 

  • D.T. Farley Jr., A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field. J. Geophys. Res. 64, 1225–1233 (1959)

    Article  ADS  Google Scholar 

  • D.T. Farley Jr., A theory of electrostatic fields in the ionosphere at nonpolar geomagnetic latitudes. J. Geophys. Res. 65, 869–877 (1960)

    Article  ADS  Google Scholar 

  • B.G. Fejer, L. Scherliess, E.R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread \(F\). J. Geophys. Res. 104, 19859–19869 (1999)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015). doi:10.1186/s40623-015-0274-3

    Article  ADS  Google Scholar 

  • S. Fukao, M.C. Kelley, T. Shirakawa, T. Takami, M. Yamamoto, T. Tsuda, S. Kato, Turbulent upwelling of the mid-latitude ionosphere, I: observational results by the MU radar. J. Geophys. Res. 96, 3725–3746 (1991)

    Article  ADS  Google Scholar 

  • S. Fukao, M. Yamamoto, R.T. Tsunoda, H. Hayakawa, T. Mukai, The SEEK (Sporadic-\(E\) experiment over Kyushu) campaign. Geophys. Res. Lett. 25, 1761–1764 (1998)

    Article  ADS  Google Scholar 

  • G. Haerendel, J.V. Eccles, S. Çakir, Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J. Geophys. Res. 97, 1209–1223 (1992)

    Article  ADS  Google Scholar 

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004)

    Article  ADS  Google Scholar 

  • C.Y. Huang, W.J. Burke, J.S. Machuzak, L.C. Gentile, P.J. Sultan, DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum. J. Geophys. Res. 106, 8131–8142 (2001)

    Article  ADS  Google Scholar 

  • C.-S. Huang, O. de La Beaujardière, P.A. Roddy, D.E. Hunton, J.O. Ballenthin, M.R. Hairston, Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator. J. Geophys. Res. 117, A11313 (2012). doi:10.1029/2012JA018163

    Article  ADS  Google Scholar 

  • J.D. Huba, G. Joyce, J. Krall, Three-dimensional equatorial spread \(F\) modeling. Geophys. Res. Lett. 35, L10102 (2008). doi:10.1029/2008GL033509

    Article  ADS  Google Scholar 

  • J.D. Huba, S.L. Ossakow, G. Joyce, J. Krall, S.L. England, Three-dimensional equatorial spread \(F\) modeling: zonal neutral wind effects. Geophys. Res. Lett. 36, L19106 (2009). doi:10.1029/2009GL040284

    Article  ADS  Google Scholar 

  • D.L. Hysell, M.C. Kelley, W.E. Swartz, R.F. Pfaff, C.M. Swenson, Steepened structures in equatorial spread \(F\), I: new observations. J. Geophys. Res. 99, 8827–8840 (1994)

    Article  ADS  Google Scholar 

  • D.L. Hysell, M.F. Larsen, C.M. Swenson, A. Barjatya, T.F. Wheeler, M.F. Sarango, R.F. Woodman, J.L. Chau, Onset conditions for equatorial spread \(F\) determined during EQUIS II. Geophys. Res. Lett. 32, L24104 (2005). doi:10.1029/2005GL024743

    Article  ADS  Google Scholar 

  • D.L. Hysell, M.F. Larsen, C.M. Swenson, T.F. Wheeler, Shear flow effects at the onset of equatorial spread \(F\). J. Geophys. Res. 111, A11317 (2006). doi:10.1029/2006JA011963

    Article  ADS  Google Scholar 

  • D.L. Hysell, R. Jafari, M.A. Milla, J.W. Meriwether, Data-driven numerical simulations of equatorial spread \(F\) in the Peruvian sector. J. Geophys. Res. Space Phys. 119, 3815–3827 (2014). doi:10.1002/2014JA019889

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn. Int. Geophys. Ser., vol. 96 (Academic Press, Boston, 2009)

    Google Scholar 

  • M.C. Kelley, S. Fukao, Turbulent upwelling of the mid-latitude ionosphere, II: theoretical framework. J. Geophys. Res. 96, 3747–3753 (1991)

    Article  ADS  Google Scholar 

  • M.C. Kelley, K.D. Baker, J.C. Ulwick, Late time barium cloud striation and their possible relationship to equatorial spread \(F\). J. Geophys. Res. 84, 1898–1904 (1979)

    Article  ADS  Google Scholar 

  • M.C. Kelley, M.F. Larsen, C. LaHoz, J.P. McClure, Gravity wave initiation of equatorial spread \(F\): a case study. J. Geophys. Res. 86, 9087–9100 (1981)

    Article  ADS  Google Scholar 

  • M.C. Kelley, J. LaBelle, E. Kudeki, B.G. Fejer, Sa. Basu, Su. Basu, K.D. Baker, C. Hanuise, P. Argo, R.F. Woodman, W.E. Swartz, D.T. Farley, J.W. Meriwether Jr., The Condor equatorial spread \(F\) campaign: overview and results of the large-scale measurements. J. Geophys. Res. 91, 5487–5503 (1986)

    Article  ADS  Google Scholar 

  • M.C. Kelley, J.J. Makela, O. de La Beaujardière, J. Retterer, Convective ionospheric storms: a review. Rev. Geophys. 49, RG2003 (2011). doi:10.1029/2010RG000340

    Article  ADS  Google Scholar 

  • E. Kudeki, A. Akgiray, M. Milla, J.L. Chau, D.L. Hysell, Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J. Atmos. Sol.-Terr. Phys. 69, 2416–2427 (2007)

    Article  ADS  Google Scholar 

  • V. Lesur, M. Rother, I. Wardinski, R. Schachtschneider, M. Hamoudi, A. Chambodut, Parent magnetic field models for the IGRF-12 GFZ-candidates. Earth Planets Space 67, 87 (2015). doi:10.1186/s40623-015-0239-6

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, First in-situ observation of night-time F region currents with the CHAMP satellite. Geophys. Res. Lett. 29(10), 1489 (2002). doi:10.1029/2001GL013845

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: its characteristics and impact on geomagnetic field modeling. Geophys. Res. Lett. 30(17), 1906 (2003). doi:10.1029/2003GL017407

    Article  ADS  Google Scholar 

  • J.J. Makela, M.C. Kelley, Field-aligned 777.4-nm composite airglow images of equatorial plasma depletions. Geophys. Res. Lett. 30(8), 1442 (2003). doi:10.1029/2003GL017106

    Article  ADS  Google Scholar 

  • J.J. Makela, Y. Otsuka, Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev. 168, 419–440 (2012). doi:10.1007/s11214-011-9816-6

    Article  ADS  Google Scholar 

  • S. Matsushita, Global presentation of the external \(S_{q}\) and \(L\) current systems. J. Geophys. Res. 70, 4395–4398 (1965)

    Article  ADS  Google Scholar 

  • S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2008). doi:10.1029/2008GC001949

    Article  ADS  Google Scholar 

  • S. Maus, C. Manoj, J. Rauberg, L. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62, 729–735 (2010)

    Article  ADS  Google Scholar 

  • C.A. Miller, W.E. Swartz, M.C. Kelley, M. Mendillo, D. Nottingham, J. Scali, B. Reinisch, Electrodynamics of midlatitude spread \(F\), I: observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes. J. Geophys. Res. 102, 11521–11531 (1997)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033

    Article  ADS  Google Scholar 

  • S.L. Ossakow, Spread \(F\) theories—a review. J. Atmos. Terr. Phys. 43, 437–452 (1981)

    Article  ADS  Google Scholar 

  • Y. Otsuka, K. Shiokawa, T. Ogawa, P. Wilkinson, Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett. 29(15), 1753 (2002). doi:10.1029/2002GL015347

    Article  ADS  Google Scholar 

  • Y. Otsuka, K. Shiokawa, T. Ogawa, P. Wilkinson, Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys. Res. Lett. 31, L15803 (2004). doi:10.1029/2004GL020262

    Article  ADS  Google Scholar 

  • J. Park, C. Stolle, H. Lühr, M. Rother, S.-Y. Su, K.W. Min, J.-J. Lee, Magnetic signatures and conjugate features of low-latitude plasma blobs as observed by the CHAMP satellite. J. Geophys. Res. 113, A09313 (2008). doi:10.1029/2008JA013211

    ADS  Google Scholar 

  • J. Park, H. Lühr, C. Stolle, M. Rother, K.W. Min, J.-K. Chung, Y.H. Kim, I. Michaelis, M. Noja, Magnetic signatures of medium-scale traveling ionospheric disturbances as observed by CHAMP. J. Geophys. Res. 114, A03307 (2009a). doi:10.1029/2008JA013792

    ADS  Google Scholar 

  • J. Park, H. Lühr, C. Stolle, M. Rother, K.W. Min, I. Michaelis, The characteristics of field-aligned currents associated with equatorial plasma bubbles as observed by the CHAMP satellite. Ann. Geophys. 27, 2685–2697 (2009b). doi:10.5194/angeo-27-2685-2009

    Article  ADS  Google Scholar 

  • J. Park, M. Noja, C. Stolle, H. Lühr, The ionospheric bubble index deduced from magnetic field and plasma observations onboard Swarm. Earth Planets Space 65, 1333–1344 (2013). doi:10.5047/eps.2013.08.005

    Article  ADS  Google Scholar 

  • J. Park, H. Lühr, G. Kervalishvili, J. Rauberg, I. Michaelis, C. Stolle, Y.-S. Kwak, Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: the spatial structure and scale sizes. J. Geophys. Res. 120, 6818–6830 (2015). doi:10.1002/2015JA021315

    Article  Google Scholar 

  • F. Perkins, Spread \(F\) and ionospheric currents. J. Geophys. Res. 78, 218–226 (1973)

    Article  ADS  Google Scholar 

  • R.F. Pfaff Jr., The near-Earth plasma environment. Space Sci. Rev. 168, 23–112 (2012). doi:10.1007/s11214-012-9872-6

    Article  ADS  Google Scholar 

  • J.M. Retterer, Forecasting low-latitude radio scintillation with 3-D ionospheric plume models, I: plume model. J. Geophys. Res. 115, A03306 (2010). doi:10.1029/2008JA013839

    ADS  Google Scholar 

  • A. Saito, T. Iyemori, M. Sugiura, N.C. Maynard, T.L. Aggson, L.H. Brace, M. Takeda, M. Yamamoto, Conjugate occurrence of the electric field fluctuations in the nighttime midlatitude ionosphere. J. Geophys. Res. 100(21), 439–21451 (1995)

    Google Scholar 

  • A. Saito, S. Fukao, S. Miyazaki, High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys. Res. Lett. 25, 3079–3082 (1998a)

    Article  ADS  Google Scholar 

  • A. Saito, T. Iyemori, L.G. Blomberg, M. Yamamoto, M. Takeda, Conjugate observations of the mid-latitude electric field fluctuations with the MU radar and the Freja satellite. J. Atmos. Sol.-Terr. Phys. 60, 129–140 (1998b)

    Article  ADS  Google Scholar 

  • A. Saito, M. Nishimura, M. Yamamoto, S. Fukao, M. Kubota, K. Shiokawa, Y. Otsuka, T. Tsugawa, T. Ogawa, M. Ishii, T. Sakanoi, S. Miyazaki, Traveling ionospheric disturbances detected in the FRONT campaign. Geophys. Res. Lett. 28, 689–692 (2001)

    Article  ADS  Google Scholar 

  • A. Saito, M. Nishimura, M. Yamamoto, S. Fukao, T. Tsugawa, Y. Otsuka, S. Miyazaki, M.C. Kelley, Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime \(F\)-region ionosphere with the MU radar and a GPS network. Earth Planets Space 54, 31–44 (2002)

    Article  ADS  Google Scholar 

  • A.J. Scannapieco, S.L. Ossakow, Nonlinear equatorial spread \(F\). Geophys. Res. Lett. 3, 451–454 (1976)

    Article  ADS  Google Scholar 

  • R. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. (Cambridge Univ. Press, Cambridge, 2009)

    Book  Google Scholar 

  • K. Shiokawa, Y. Otsuka, C. Ihara, T. Ogawa, F.J. Rich, Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbances at midlatitude. J. Geophys. Res. 108(A4), 1145 (2003). doi:10.1029/2002JA009639

    Article  Google Scholar 

  • S. Singh, F.S. Johnson, R.A. Power, Gravity wave seeding of equatorial plasma bubbles. J. Geophys. Res. 102, 7399–7410 (1997)

    Article  ADS  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 111, A02304 (2006). doi:10.1029/2005JA011184

    Article  ADS  Google Scholar 

  • C. Stolle, H. Lühr, B.G. Fejer, Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann. Geophys. 26, 3979–3988 (2008)

    Article  ADS  Google Scholar 

  • C. Stolle, I. Michaelis, J. Rauberg, The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites. Earth Planets Space 68, 110 (2016)

    Article  ADS  Google Scholar 

  • S.-Y. Su, C.H. Liu, H.H. Ho, C.K. Chao, Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions. J. Geophys. Res. 111, A06305 (2006). doi:10.1029/2005JA011330

    ADS  Google Scholar 

  • S.-Y. Su, C.K. Chao, C.H. Liu, On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities. J. Geophys. Res. 113, A05307 (2008). doi:10.1029/2007JA012809

    ADS  Google Scholar 

  • P.J. Sultan, Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread \(F\). J. Geophys. Res. 101, 26,875–26,891 (1996)

    Article  ADS  Google Scholar 

  • E.P. Szuszczewicz, R.T. Tsunoda, R. Narcisi, J.C. Holmes, Coincident radar and rocket observations of equatorial spread-\(F\). Geophys. Res. Lett. 7, 537–540 (1980)

    Article  ADS  Google Scholar 

  • E. Thébault, M. Purucker, K.A. Whaler, B. Langlais, T.J. Sabaka, The magnetic field of the Earth’s lithosphere. Space Sci. Rev. 155, 95–127 (2010). doi:10.1007/s11214-010-9667-6

    Article  ADS  Google Scholar 

  • E. Thébault, P. Vigneron, S. Maus, A. Chulliat, O. Sirol, G. Hulot, Swarm SCARF dedicated lithospheric field inversion chain. Earth Planets Space 65, 1257–1270 (2013). doi:10.5047/eps.2013.07.008

    Article  ADS  Google Scholar 

  • E. Thébault, C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F.J. Lowes, S. Macmillan, M. Rother, T.J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, T. Zvereva, International geomagnetic reference field: the 12th generation. Earth Planets Space 67, 79 (2015). doi:10.1186/s40623-015-0228-9

    Article  ADS  Google Scholar 

  • R.T. Tsunoda, Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated \(E\) region Pedersen conductivity. J. Geophys. Res. 90, 447–456 (1985)

    Article  ADS  Google Scholar 

  • R.T. Tsunoda, On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. 111, A11304 (2006). doi:10.1029/2006JA011630

    Article  ADS  Google Scholar 

  • R.T. Tsunoda, Upwelling: a unit of disturbance in equatorial spread \(F\). Prog. Earth Planet. Sci. 2, 9 (2015). doi:10.1186/s40645-015-0038-5

    Article  ADS  Google Scholar 

  • R.T. Tsunoda, R.B. Cosgrove, Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett. 28, 4171–4174 (2001)

    Article  ADS  Google Scholar 

  • R.T. Tsunoda, R.C. Livingston, J.P. McClure, W.B. Hanson, Equatorial plasma bubbles: vertically elongated wedges from the bottomside \(F\) layer. J. Geophys. Res. 87, 9171–9180 (1982)

    Article  ADS  Google Scholar 

  • R.F. Woodman, Spread \(F\)—an old equatorial aeronomy problem finally resolved? Ann. Geophys. 27, 1915–1934 (2009)

    Article  ADS  Google Scholar 

  • R.F. Woodman, C. La Hoz, Radar observations of \(F\) region equatorial irregularities. J. Geophys. Res. 81, 5447–5466 (1976)

    Article  ADS  Google Scholar 

  • C. Xiong, J. Park, H. Lühr, C. Stolle, S.Y. Ma, Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann. Geophys. 28, 1647–1658 (2010). doi:10.5194/angeo-28-1647-2010

    Article  ADS  Google Scholar 

  • M. Yamamoto, S. Fukao, R.F. Woodman, T. Ogawa, T. Tsuda, S. Kato, Mid-latitude \(E\) region field-aligned irregularities observed with the MU radar. J. Geophys. Res. 96, 15,943–15,949 (1991)

    Article  ADS  Google Scholar 

  • M. Yamamoto, S. Fukao, R.T. Tsunoda, R. Pfaff, H. Hayakawa, SEEK-2 (Sporadic-\(E\) experiment over Kyushu 2)—project outline, and significance. Ann. Geophys. 23, 2295–2305 (2005)

    Article  ADS  Google Scholar 

  • T. Yokoyama, Instabilities in the midlatitude ionosphere in terms of E-F coupling, aeronomy of the Earth’s atmosphere and Ionosphere, in IAGA Special Sopron Book Series, vol. 2, ed. by M.A. Abdu, D. Pancheva (2011), pp. 283–290

    Google Scholar 

  • T. Yokoyama, Scale dependence and frontal formation of nighttime medium-scale traveling ionospheric disturbances. Geophys. Res. Lett. 40, 4515–4519 (2013). doi:10.1002/grl.50905

    Article  ADS  Google Scholar 

  • T. Yokoyama, Hemisphere-coupled modeling of nighttime medium-scale traveling ionospheric disturbances. Adv. Space Res. 54, 481–488 (2014). doi:10.1016/j.asr.2013.07.048

    Article  ADS  Google Scholar 

  • T. Yokoyama, D.L. Hysell, A new midlatitude ionosphere electrodynamics coupling model (MIECO): latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophys. Res. Lett. 37, L08105 (2010). doi:10.1029/2010GL042598

    ADS  Google Scholar 

  • T. Yokoyama, Y. Otsuka, T. Ogawa, M. Yamamoto, D.L. Hysell, First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere. Geophys. Res. Lett. 35, L03101 (2008). doi:10.1029/2007GL032496

    Article  ADS  Google Scholar 

  • T. Yokoyama, D.L. Hysell, Y. Otsuka, M. Yamamoto, Three-dimensional simulation of the coupled Perkins and \(E_{\mathrm{s}}\) layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. 114, A03308 (2009). doi:10.1029/2008JA013789

    ADS  Google Scholar 

  • T. Yokoyama, H. Shinagawa, H. Jin, Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res. Space Phys. 119, 10,474–10,482 (2014). doi:10.1002/2014JA020708

    Article  Google Scholar 

  • T. Yokoyama, H. Jin, H. Shinagawa, West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model. J. Geophys. Res. Space Phys. 120, 8810–8816 (2015). doi:10.1002/2015JA021799

    Article  ADS  Google Scholar 

  • S.T. Zalesak, S.L. Ossakow, P.K. Chaturvedi, Nonlinear equatorial spread \(F\): the effect of neutral winds and background conductivity. J. Geophys. Res. 87, 151–166 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the International Space Science Institute Bern for hosting the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. CHAMP satellite observations are available from the GFZ’s data center (http://isdc.gfz-potsdam.de). Swarm observations are provided by ESA on http://earth.esa.int/swarm. Ingo Michaelis and Jan Rauberg assisted in deriving the residuals between Swarm observations and magnetic field models. This work was supported by the computational joint research program of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Japan. The simulation was also performed by using Hitachi SR16000/M1 at the National Institute of Information and Communications Technology (NICT), Japan. Simulation results are available upon request to the author (TY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, T., Stolle, C. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field. Space Sci Rev 206, 495–519 (2017). https://doi.org/10.1007/s11214-016-0295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0295-7

Keywords

Navigation