Skip to main content

Advertisement

Log in

Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Two of the primary goals of the MAVEN mission are to determine how the rate of escape of Martian atmospheric gas to space at the current epoch depends upon solar influences and planetary parameters and to estimate the total mass of atmosphere lost to space over the history of the planet. Along with MAVEN’s suite of nine science instruments, a collection of complementary models of the neutral and plasma environments of Mars’ upper atmosphere and near-space environment are an indispensable part of the MAVEN toolkit, for three primary reasons. First, escaping neutrals will not be directly measured by MAVEN and so neutral escape rates must be derived, via models, from in situ measurements of plasma temperatures and neutral and plasma densities and by remote measurements of the extended exosphere. Second, although escaping ions will be directly measured, all MAVEN measurements are limited in spatial coverage, so global models are needed for intelligent interpolation over spherical surfaces to calculate global escape rates. Third, MAVEN measurements will lead to multidimensional parameterizations of global escape rates for a range of solar and planetary parameters, but further global models informed by MAVEN data will be required to extend these parameterizations to the more extreme conditions that likely prevailed in the early solar system, which is essential for determining total integrated atmospheric loss. We describe these modeling tools and the strategies for using them in concert with MAVEN measurements to greater constrain the history of atmospheric loss on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. MSO coordinates have the \(+\mathrm{x}\) axis directed toward the Sun, the +z-axis directed perpendicular to the Mars orbital plane (generally northward), and the \(+\mathrm{y}\) axis completing the right-hand system (approximately opposite to the instantaneous velocity vector of the planet). Cylindrical coordinates utilize the x-axis, and the distance from the x-axis.

References

  • E. Alge, N.G. Adams, D. Smith, Measurements of the dissociative recombination coefficients of \(\mbox{O}^{+}2\), \(\mathrm{No}^{+}\) and \(\mathrm{Nh}^{+4}\) in the temperature-range 200–600 K. J. Phys. B, At. Mol. Opt. Phys. 16, 1433–1444 (1983)

    Article  ADS  Google Scholar 

  • D.E. Anderson, Mariner 6, 7, and 9 ultraviolet spectrometer experiment—analysis of hydrogen Lyman-Alpha data. J. Geophys. Res. 79, 1513–1518 (1974)

    Article  ADS  Google Scholar 

  • L. Andersson, R.E. Ergun, A.I.F. Stewart, The combined atmospheric photochemistry and ion tracing code: reproducing the Viking Lander results and initial outflow results. Icarus 206, 120–129 (2010)

    Article  ADS  Google Scholar 

  • L. Andersson, R.E. Ergun, G. Delory, The Langmuir probe and waves experiment for MAVEN. Space Sci. Rev. (2014, submitted)

  • M. Angelats i Coll, The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km. Geophys. Res. Lett. 32, L04201 (2005)

    ADS  Google Scholar 

  • W. Atwell, P. Saganti, F.A. Cucinotta, C.J. Zeitlin, A space radiation shielding model of the Martian radiation environment experiment (MARIE). Adv. Space Res. 33, 2219–2221 (2004)

    Article  ADS  Google Scholar 

  • S.L. Baliunas, G.W. Henry, R.A. Donahue, F.C. Fekel, W.H. Soon, Properties of Sun-like stars with planets: rho(1) Cancri, tau Bootis, and nu Andromedae. Astrophys. J. 474, L119–L122 (1997)

    Article  ADS  Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007a)

    Article  ADS  Google Scholar 

  • S. Barabash, R. Lundin, H. Andersson, K. Brinkfeldt, A. Grigoriev, H. Gunell, M. Holmström, M. Yamauchi, K. Asamura, P. Bochsler, P. Wurz, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, S. Orsini, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, K.C. Hsieh, B.R. Sandel, R.A. Frahm, J.R. Sharber, J.D. Winningham, M. Grande, E. Kallio, H. Koskinen, P. Riihelä, W. Schmidt, T. Säles, J.U. Kozyra, N. Krupp, J. Woch, S. Livi, J.G. Luhmann, S. McKenna-Lawlor, E.C. Roelof, D.J. Williams, J.A. Sauvaud, A. Fedorov, J.J. Thocaven, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126, 113–164 (2007b)

    Article  ADS  Google Scholar 

  • G.A. Bird, New chemical-reaction model for direct simulation Monte-Carlo studies. Prog. Astronaut. Aeronaut. 159, 185–196 (1994)

    Google Scholar 

  • S.W. Bougher, H. Shinagawa, The Mars thermosphere-ionosphere: predictions for the arrival of Planet-B. Earth Planets Space 50, 247–257 (1998)

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, E.C. Ridley, R.E. Dickinson, The Mars thermosphere. 2. General-circulation with coupled dynamics and composition. J. Geophys. Res., Solid Earth 95, 14811–14827 (1990)

    Article  Google Scholar 

  • S. Bougher, G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, R.T. Clancy, Mars global surveyor aerobraking: atmospheric trends and model interpretation. Adv. Space Res. 23, 1887–1897 (1999)

    Article  ADS  Google Scholar 

  • S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS radio science electron density profiles: interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res., Planets 109, E03010 (2004)

    ADS  Google Scholar 

  • S.W. Bougher, J.M. Bell, J.R. Murphy, M.A. Lopez-Valverde, P.G. Withers, Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006)

    Article  ADS  Google Scholar 

  • S.W. Bougher, P.L. Blelly, M. Combi, J.L. Fox, I. Mueller-Wodarg, A. Ridley, R.G. Roble, Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107–141 (2008)

    Article  ADS  Google Scholar 

  • S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmospheric reservoir that regulates volatile escape. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0053-7

    Google Scholar 

  • S.W. Bougher, D. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, A. Ridley, Mars global ionosphere-thermosphere model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res., Planets 120, 311–342 (2015)

    Article  ADS  Google Scholar 

  • D.A. Brain, Variability of the altitude of the Martian sheath. Geophys. Res. Lett. 32, L18203 (2005)

    Article  ADS  Google Scholar 

  • D.A. Brain, Mars global surveyor measurements of the Martian solar wind interaction. Space Sci. Rev. 126, 77–112 (2006)

    Article  ADS  Google Scholar 

  • D.A. Brain, B.M. Jakosky, Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., Planets 103, 22689–22694 (1998)

    Article  ADS  Google Scholar 

  • D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res. 108, 1424 (2003). doi:10.1029/2002JA009482

    Article  Google Scholar 

  • D.A. Brain, D.L. Mitchell, J.S. Halekas, The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus 182, 464–473 (2006)

    Article  ADS  Google Scholar 

  • D. Brain, S. Barabash, A. Boesswetter, S. Bougher, S. Brecht, G. Chanteur, D. Hurley, E. Dubinin, X. Fang, M. Fraenz, J. Halekas, E. Harnett, M. Holmstrom, E. Kallio, H. Lammer, S. Ledvina, M. Liemohn, K. Liu, J. Luhmann, Y. Ma, R. Modolo, A. Nagy, U. Motschmann, H. Nilsson, H. Shinagawa, S. Simon, N. Terada, A comparison of global models for the solar wind interaction with Mars. Icarus 206, 139–151 (2010a)

    Article  ADS  Google Scholar 

  • D.A. Brain, D. Hurley, M.R. Combi, The solar wind interaction with Mars: recent progress and future directions. Icarus 206, 1–4 (2010b)

    Article  ADS  Google Scholar 

  • D.A. Brain, S.W. Bougher, S.H. Brecht, G.M. Chanteur, S. Curry, C. Dong, E. Dubinin, F. Duru, X. Fang, A. Fedorov, M. Fraenz, J.S. Halekas, E.M. Harnett, S. Hess, M. Holmstrom, R. Jarvinen, E.J. Kallio, A. Kidder, S.A. Ledvina, M.W. Liemohn, J.G. Luhmann, Y. Ma, R. Modolo, A.F. Nagy, D. Najib, H. Nilsson, C.S. Paty, D. Ulusen, Comparison of global models for the escape of Martian atmospheric plasma. Publication: American Geophysical Union, Fall Meeting 2012, abstract #P13C-1969

  • D.A. Brain, S. Barabash, S.W. Bougher, F. Duru, B.M. Jakosky, R. Modolo, Solar wind interaction and atmospheric escape, in Mars Book II (2015)

    Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013)

    Article  ADS  Google Scholar 

  • M. Chaffin, J.-Y. Chaufray, I. Stewart, M. Montmessin, N. Schneider, Unexpected variability of martian hydrogen escape. Geophys. Res. Lett. 41, 2 (2014). doi:10.1002/2013GL058578

    Article  Google Scholar 

  • J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–960 (1963)

    Article  ADS  Google Scholar 

  • J.W. Chamberlain, Charge-exchange in a planetary corona—its effect on distribution and escape of hydrogen. J. Geophys. Res. Space Phys. 82, 1–9 (1977)

    Article  ADS  Google Scholar 

  • G.M. Chanteur, E. Dubinin, R. Modolo, M. Fraenz, Capture of solar wind alpha-particles by the Martian atmosphere. Geophys. Res. Lett. 36, L23105 (2009)

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004)

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55, 343–357 (2007)

    Article  ADS  Google Scholar 

  • B.K. Chatterjee, R. Johnsen, Clustering reactions of \(\mbox{H2CN}^{+}\) ions with HCN. J. Chem. Phys. 87, 2399 (1987)

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112, E09009 (2007)

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars express. Icarus 195, 598–613 (2008)

    Article  ADS  Google Scholar 

  • P.R. Christensen, B. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween, K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004)

    Article  ADS  Google Scholar 

  • F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi:10.1029/2006JE002818

    Article  ADS  Google Scholar 

  • J.T. Clarke, J.-L. Bertaux, J.-Y. Chaufray, G.R. Gladstone, E. Quemerais, J.K. Wilson, D. Bhattacharyya, A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41, 8013–8020 (2014). doi:10.1002/2014GL061803

    Article  ADS  Google Scholar 

  • P.A. Cloutier, C.C. Law, D.H. Crider, P.W. Walker, Y. Chen, M.H. Acuna, J.E.P. Connerney, R.P. Lin, K.A. Anderson, D.L. Mitchell, C.W. Carlson, J. McFadden, D.A. Brain, H. Reme, C. Mazelle, J.A. Sauvaud, C. d’Uston, D. Vignes, S.J. Bauer, N.F. Ness, Venus-like interaction of the solar wind with Mars. Geophys. Res. Lett. 26, 2685–2688 (1999)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Response to “Questions about Magnetic Lineations in the Ancient Crust of Mars” (2000) by C.G.A. Harrison. Science 287, 547a (2000)

    Article  Google Scholar 

  • J. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Shepperd, The MAVEN magnetic field investigation. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0169-4

    Google Scholar 

  • D.H. Crider, D. Vignes, A.M. Krymskii, T.K. Breus, N.F. Ness, D.L. Mitchell, J.A. Slavin, M. Acuña, A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. J. Geophys. Res. 108(A12), 1461 (2003). doi:10.1029/2003JA009875

    Article  Google Scholar 

  • S. Curry, M.W. Liemohn, X. Fang, Y. Ma, D. Najib, D. Brain, Model comparison of oxygen ion loss at Mars. Publication: American Geophysical Union, Fall Meeting 2011, abstract #SA13A-1872

  • S.M. Curry, M. Liemohn, X. Fang, D. Brain, Y. Ma, Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars. J. Geophys. Res. Space Phys. 118, 3700–3711 (2013a)

    Article  ADS  Google Scholar 

  • S.M. Curry, M. Liemohn, X. Fang, Y. Ma, J. Espley, The influence of production mechanisms on pick-up ion loss at Mars. J. Geophys. Res. Space Phys. 118, 554–569 (2013b)

    Article  ADS  Google Scholar 

  • G.T. Delory, J.G. Luhmann, D. Brain, R.J. Lillis, D.L. Mitchell, R.A. Mewaldt, T.V. Falkenberg, Energetic particles detected by the electron reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather 10, S06003 (2012)

    Article  ADS  Google Scholar 

  • Y. Deng, A.D. Richmond, A.J. Ridley, H.L. Liu, Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys. Res. Lett. 35, L01104 (2008)

    ADS  Google Scholar 

  • C. Diéval, G. Stenberg, H. Nilsson, S. Barabash, A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations. J. Geophys. Res. Space Phys. 118, 1972–1983 (2013)

    Article  ADS  Google Scholar 

  • C. Dong, S.W. Bougher, Y. Ma, G. Toth, A. Nagy, D. Najib, Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multi-fluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 2708–2715 (2014). doi:10.1002/2014GL059515

    Article  ADS  Google Scholar 

  • E. Dubinin, Upper ionosphere of Mars is not axially symmetrical. Earth Planets Space 64, 113–120 (2012)

    Article  ADS  Google Scholar 

  • E. Dubinin, M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, O. Vaisberg, Ion energization and escape on Mars and Venus. Space Sci. Rev. 162, 173–211 (2011)

    Article  ADS  Google Scholar 

  • E. Dubinin, M. Fraenz, J. Woch, T.L. Zhang, J. Wei, A. Fedorov, S. Barabash, R. Lundin, Bursty escape fluxes in plasma sheets of Mars and Venus. Geophys. Res. Lett. 39, L01104 (2012)

    Article  ADS  Google Scholar 

  • D.J. Dunlop, J. Arkani-Hamed, Magnetic minerals in the Martian crust. J. Geophys. Res. 110, E12S04 (2005). doi:10.1029/2005JE002404

    ADS  Google Scholar 

  • N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37, L03107 (2010)

    ADS  Google Scholar 

  • F. Eparvier, P.C. Chamberlin, T.N. Woods, E.M.B. Thiemann, The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev. (2014)

  • J.R. Espley, G.T. Delory, P.A. Cloutier, Initial observations of low-frequency magnetic fluctuations in the Martian ionosphere. J. Geophys. Res. 111, E06S22 (2006)

    Article  Google Scholar 

  • X. Fang, M.W. Liemohn, A.F. Nagy, Y. Ma, D.L. De Zeeuw, J.U. Kozyra, T.H. Zurbuchen, Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res. 113, A02210 (2008)

    ADS  Google Scholar 

  • X. Fang, M.W. Liemohn, A.F. Nagy, J.G. Luhmann, Y. Ma, On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus 206, 130–138 (2010)

    Article  ADS  Google Scholar 

  • X.H. Fang, S.W. Bougher, R.E. Johnson, J.G. Luhmann, Y.J. Ma, Y.C. Wang, M.W. Liemohn, The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40, 1922–1927 (2013)

    Article  ADS  Google Scholar 

  • A. Fedorov, E. Budnik, J.A. Sauvaud, C. Mazelle, S. Barabash, R. Lundin, M. Acuna, M. Holmstrom, A. Grigoriev, M. Yamauchi, H. Andersson, J.J. Thocaven, D. Winningham, R. Frahm, J.R. Sharber, J. Scherrer, A.J. Coates, D.R. Linder, D.O. Kataria, E. Kallio, H. Koskinen, T. Sales, P. Riihela, W. Schmidt, J. Kozyra, J. Luhmann, E. Roelof, D. Williams, S. Livi, C.C. Curtis, K.C. Hsieh, B.R. Sandel, M. Grande, M. Carter, S. McKenna-Lawler, S. Orsini, R. Cerulli-Irelli, M. Maggi, P. Wurz, P. Bochsler, N. Krupp, J. Woch, M. Franz, K. Asamura, C. Dierker, Structure of the Martian wake. Icarus 182, 329–336 (2006)

    Article  ADS  Google Scholar 

  • P.D. Feldman, A.J. Steffl, J.W. Parker, M.F. A’Hearn, J.L. Bertaux, S.A. Stern, H.A. Weaver, D.C. Slater, M. Versteeg, H.B. Throop, N.J. Cunningham, L.M. Feaga, Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214, 394–399 (2011)

    Article  ADS  Google Scholar 

  • F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155 (1999)

    Article  ADS  Google Scholar 

  • J.L. Fox, A. Hac, Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 1022, 24005–24012 (1997)

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009)

    Article  ADS  Google Scholar 

  • J.L. Fox, A. Hać, Isotope fractionation in the photochemical escape of O from Mars. Icarus 208, 176–191 (2010)

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, The escape of O from Mars: Sensitivity to the elastic cross sections. Icarus 228, 375–385 (2014)

    Article  ADS  Google Scholar 

  • Y. Futaana, S. Barabash, M. Yamauchi, S. McKenna-Lawlor, R. Lundin, J.G. Luhmann, D. Brain, E. Carlsson, J.A. Sauvaud, J.D. Winningham, R.A. Frahm, P. Wurz, M. Holmström, H. Gunell, E. Kallio, W. Baumjohann, H. Lammer, J.R. Sharber, K.C. Hsieh, H. Andersson, A. Grigoriev, K. Brinkfeldt, H. Nilsson, K. Asamura, T.L. Zhang, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, B.R. Sandel, A. Fedorov, C. Mazelle, J.J. Thocaven, M. Grande, H.E.J. Koskinen, T. Sales, W. Schmidt, P. Riihela, J. Kozyra, N. Krupp, J. Woch, M. Fränz, E. Dubinin, S. Orsini, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, E. Roelof, P. Brandt, K. Szego, J. Scherrer, P. Bochsler, Mars express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56, 873–880 (2008)

    Article  ADS  Google Scholar 

  • F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114, E04001 (2009)

    ADS  Google Scholar 

  • F. González-Galindo, J.Y. Chaufray, M.A. Lopez-Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, M. Yagi, Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. J. Geophys. Res., Planets 118, 2105–2123 (2013)

    Article  ADS  Google Scholar 

  • J.T. Gosling, S.J. Bame, W.C. Feldman, D.J. Mccomas, J.L. Phillips, B. Goldstein, M. Neugebauer, J. Burkepile, A.J. Hundhausen, L. Acton, The band of solar-wind variability at low heliographic latitudes near solar-activity minimum—plasma results from the Ulysses rapid latitude scan. Geophys. Res. Lett. 22, 3329–3332 (1995)

    Article  ADS  Google Scholar 

  • M. Gurtner, L. Desorgher, E.O. Fluckiger, M.R. Moser,Advances in Space Research Simulation of the interaction of space radiation with the Martian atmosphere and surface. Adv. Space Res. 36, 2176–2181 (2005)

    Article  ADS  Google Scholar 

  • J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The MAVEN solar wind ion analyzer. Space Sci. Rev. (2013). doi:10.1007/s11214-013-0029-z

    Google Scholar 

  • W.B. Hanson, S. Sanatani, D. Zuccaro, Retarding potential analyzer measurements from Viking Landers. Trans. Am. Geophys. Union 57, 966 (1976)

    Google Scholar 

  • T. Hara, K. Seki, Y. Futaana, M. Yamauchi, M. Yagi, Y. Matsumoto, M. Tokumaru, A. Fedorov, S. Barabash, Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. J. Geophys. Res. 116, A09222 (2011)

    Article  Google Scholar 

  • T. Hara, K. Seki, H. Hasegawa, D.A. Brain, K. Matsunaga, M.H. Saito, D. Shiota, Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction. J. Geophys. Res. Space Phys. 119, 1262–1271 (2014)

    Article  ADS  Google Scholar 

  • P. Hartogh, A.S. Medvedev, T. Kuroda, R. Saito, G. Villanueva, A.G. Feofilov, A.A. Kutepov, U. Berger, Description and climatology of a new general circulation model of the Martian atmosphere. J. Geophys. Res. 110(E11), E11008 (2005)

    Article  ADS  Google Scholar 

  • D.M. Hassler, C. Zeitlin, R.F. Wimmer-Schweingruber, S. Böttcher, C. Martin, J. Andrews, E. Böhm, D.E. Brinza, M.A. Bullock, S. Burmeister, B. Ehresmann, M. Epperly, D. Grinspoon, J. Köhler, O. Kortmann, K. Neal, J. Peterson, A. Posner, S. Rafkin, L. Seimetz, K.D. Smith, Y. Tyler, G. Weigle, G. Reitz, F.A. Cucinotta, The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev. 170, 503–558 (2012)

    Article  ADS  Google Scholar 

  • N.G. Heavens, M.I. Richardson, A. Kleinbohl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res., Planets 116, E04003 (2011)

    ADS  Google Scholar 

  • M. Izakov, O. Krasicki, Effect of nonthermal escape of atoms on Martian atmosphere composition Trans. Am. Geophys. Union 58, 749 (1977)

    Google Scholar 

  • B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, o. Beutelschies G., The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. (2015, this issue). doi:10.1007/s11214-015-0139-x

  • R.E. Johnson, Plasma-induced sputtering of an atmosphere. Space Sci. Rev. 69, 215–253 (1994)

    Article  ADS  Google Scholar 

  • R.E. Johnson, J.G. Luhmann, Sputter contribution to the atmospheric corona on Mars. J. Geophys. Res. 103, 3649–3653 (1998)

    Article  ADS  Google Scholar 

  • R.E. Johnson, D. Schnellenberger, M.C. Wong, The sputtering of an oxygen thermosphere by energetic \(\mbox{O}^{+}\). J. Geophys. Res., Planets 105, 1659–1670 (2000)

    Article  ADS  Google Scholar 

  • M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, E06008 (2006)

    Article  ADS  Google Scholar 

  • E. Kallio, S. Barabash, Magnetized Mars: spatial distribution of oxygen ions. Earth Planets Space 64, 149–156 (2012)

    Article  ADS  Google Scholar 

  • E. Kallio, S. Barabash, P. Janhunen, R. Jarvinen, Magnetized Mars: transformation of Earth-like magnetosphere to Venus-like induced magnetosphere. Planet. Space Sci. 56, 823–827 (2008)

    Article  ADS  Google Scholar 

  • E. Kallio, J.-Y. Chaufray, R. Modolo, D. Snowden, R. Winglee, Modeling of Venus, Mars, and Titan. Space Sci. Rev. 162, 267–307 (2011)

    Article  ADS  Google Scholar 

  • V. Kharchenko, A. Dalgarno, B. Zygelman, J.H. Yee, Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere. J. Geophys. Res. 105, 24899 (2000)

    Article  ADS  Google Scholar 

  • J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 339–342 (1998)

    Google Scholar 

  • D. Koutroumpa, R. Modolo, G. Chanteur, J.Y. Chaufray, V. Kharchenko, R. Lallement, Solar wind charge exchange X-ray emission from Mars. Astron. Astrophys. 545, A153 (2012)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107, 5128 (2002)

    Article  Google Scholar 

  • H. Lammer, Origin and Evolution of Planetary Atmospheres (Springer, Berlin, 2013)

    Book  Google Scholar 

  • D.E. Larson, R.J. Lillis, K. Hatch, M. Robinson, D. Glaser, J. Chen, D.W. Curtis, C. Tiu, R.P. Lin, J.G. Luhmann, B.M. Jakosky, The MAVEN solar energetic particle investigation. Space Sci. Rev. (2015, this issue)

  • J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004)

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Sputtering of the Martian atmosphere by solar wind pick-up ions. Planet. Space Sci. 49, 645–656 (2001)

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Role of molecular species in pickup ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, 5010 (2002)

    Article  Google Scholar 

  • F. Leblanc, J. Luhmann, R.E. Johnson, E. Chassefiere, Some expected impacts of a solar energetic particle event at Mars. J. Geophys. Res. 107, 1058 (2002)

    Article  Google Scholar 

  • S.A. Ledvina, Y.J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139, 143–189 (2008)

    Article  ADS  Google Scholar 

  • F. Lefèvre, Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004 (2004)

    Article  ADS  Google Scholar 

  • C.B. Leovy, Control of the homopause level. Icarus 50, 311–321 (1982)

    Article  ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, Nightside electron precipitation at Mars: geographic variability and dependence on solar wind conditions. J. Geophys. Res. Space Phys. 118, 3546–3556 (2013)

    Article  ADS  Google Scholar 

  • R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35, L14203 (2008a)

    Article  ADS  Google Scholar 

  • R.J. Lillis, H.V. Frey, M. Manga, D.L. Mitchell, R.P. Lin, M.H. Acuña, S.W. Bougher, An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the Martian dynamo. Icarus 194, 575–596 (2008b)

    Article  ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, G.T. Delory, D.L. Mitchell, J.G. Luhmann, R.P. Lin, Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere. J. Geophys. Res., Planets 117, E03004 (2012)

    ADS  Google Scholar 

  • R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118, 1488–1511 (2013)

    Article  ADS  Google Scholar 

  • J. Luhmann, L.H. Brace, Near-Mars space. Rev. Geophys. 29, 121–140 (1991)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars spatial distributions energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by \(\mbox{O}(+)\) pickup ions. Geophys. Res. Lett. 19(21), 2151–2154 (1992)

    Article  ADS  Google Scholar 

  • R. Lundin, A. Zakharov, R. Pellinen, S.W. Barabasj, H. Borg, E.M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, N. Pissarenko, Aspera phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett. 17, 873–876 (1990)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008)

    ADS  Google Scholar 

  • R. Lundin, S. Barabash, M. Yamauchi, H. Nilsson, D. Brain, On the relation between plasma escape and the Martian crustal magnetic field. Geophys. Res. Lett. 38, L02102 (2011)

    Article  ADS  Google Scholar 

  • Y. Ma, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004)

    Article  ADS  Google Scholar 

  • Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007)

    Article  ADS  Google Scholar 

  • Y. Ma, A.F. Nagy, K.C. Hansen, D. De Zeeuw, T. Gombosi, K. Powell, Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107, 1282 (2002)

    Article  Google Scholar 

  • Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004)

    Article  ADS  Google Scholar 

  • Y. Ma, X.H. Fang, C.T. Russell, A.F. Nagy, G. Toth, J.G. Luhmann, D.A. Brain, C.F. Dong, Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett. 41, 6563–6569 (2014)

    Article  ADS  Google Scholar 

  • J.B. Madeleine, F. Forget, E. Millour, L. Montabone, M.J. Wolff, Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res., Planets 116, E11010 (2011)

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, C.R. Webster, M. Cabane, The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012)

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, M. Benna, T. King, D.N. Harpold, R. Arvey, M. Barciniak, M. Bendt, D. Carrigan, T. Errigo, V. Holmes, C.S. Johnson, J. Kellogg, P. Kimvilakani, M. Lefavor, J. Hengemihle, F. Jaeger, E. Lyness, J. Maurer, A. Melak, F. Noreiga, M. Noriega, K. Patel, B. Prats, E. Raaen, F. Tan, E. Weidner, C. Gundersen, S. Battel, B.P. Block, K. Arnett, R. Miller, C. Cooper, C. Edmonson, J.T. Nolan, The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0091-1

    MATH  Google Scholar 

  • P. Makela, N. Gopalswamy, S. Akiyama, H. Xie, S. Yashiro, Energetic storm particle events in coronal mass ejection-driven shocks. J. Geophys. Res. Space Phys. 116, A08101 (2011)

    ADS  Google Scholar 

  • L. Maltagliati, F. Montmessin, A. Fedorova, O. Korablev, F. Forget, J.L. Bertaux, Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011)

    Article  ADS  Google Scholar 

  • D.J. McCleese, J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read, R.W. Zurek, Mars climate sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res., Planets 112, E05S06 (2007)

    Google Scholar 

  • W. McClintock, N.M. Schneider, G.M. Holsclaw, J. Clarke, A. Hoskins, I. Stewart, F. Montmessin, R. Yelle, The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0098-7

    MATH  Google Scholar 

  • A.S. McEwen, M.C. Malin, M.H. Carr, W.K. Hartmann, Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999)

    Article  ADS  Google Scholar 

  • J. McFadden, O. Kortmann, G. Dalton G. J, R. Abiad, D. Curtis, R. Sterling, K. Hatch, P. Berg, C. Tiu, M. Marckwordt, R. Lin, B. Jakosky, The MAVEN Suprathermal and Thermal Ion Composition (STATIC) instrument. Space Sci. Rev. (2014, this issue)

  • H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989)

    Article  ADS  Google Scholar 

  • C. Milbury, G. Schubert, C.A. Raymond, S.E. Smrekar, B. Langlais, The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117, 10007 (2012)

    Article  Google Scholar 

  • D.L. Mitchell, R. Lin, C. Mazelle, H. Reme, P.A. Cloutier, J. Connerney, M.H. Acuna, N. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106, 419–427 (2001)

    Google Scholar 

  • D.L. Mitchell, C. Mazelle, D.W. Curtis, The MAVEN solar wind electron analyzer. Space Sci. Rev. (2014, submitted)

  • R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 433–444 (2005)

    Article  ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann. Geophys. 24, 3403–3410 (2006)

    Article  ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, E. Dubinin, Dynamic Martian magnetosphere: transient twist induced by a rotation of the IMF. Geophys. Res. Lett. 39, L01106 (2012)

    Article  ADS  Google Scholar 

  • F. Montmessin, Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res. 109, E10004 (2004)

    Article  ADS  Google Scholar 

  • D.D. Morgan, D.A. Gurnett, D.L. Kirchner, R.L. Huff, D.A. Brain, W.V. Boynton, M.H. Acuña, J.J. Plaut, G. Picardi, Solar control of radar wave absorption by the Martian ionosphere. Geophys. Res. Lett. 33, L13202 (2006)

    Article  ADS  Google Scholar 

  • A.F. Nagy, D. Winterhalter, K. Sauer, T.E. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, G. Kotova, W.I. Axford, C. Bertucci, J.G. Trotignon, The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004)

    Article  ADS  Google Scholar 

  • C.M.C. Nairn, R. Grard, A. Skalsky, J.G. Trotignon, Plasma and wave observations in the night sector of Mars. J. Geophys. Res. Space Phys. 96, 11227–11233 (1991)

    Article  ADS  Google Scholar 

  • D. Najib, A.F. Nagy, G. Tóth, Y. Ma, Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. 116, A05204 (2011)

    Article  ADS  Google Scholar 

  • F. Nemec, D.D. Morgan, C. Di´eval, D.A. Gurnett, Y. Futaana, Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events. Geophys. Res. Lett. 41(3), 793–798 (2014)

    Article  ADS  Google Scholar 

  • G. Newkirk, A.J. Hundhausen, V. Pizzo, Solar cycle modulation of galactic cosmic rays: speculation on the role of coronal transients. J. Geophys. Res. 86, 5387 (1981)

    Article  ADS  Google Scholar 

  • A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977)

    Article  ADS  Google Scholar 

  • H. Nilsson, E. Carlsson, H. Gunell, Y. Futaana, S. Barabash, R. Lundin, A. Fedorov, Y. Soobiah, A. Coates, M. Franz, E. Roussos, Investigation of the influence of magnetic anomalies on ion distributions at Mars. Space Sci. Rev. 126, 355–372 (2006)

    Article  ADS  Google Scholar 

  • H. Nilsson, E. Carlsson, D.A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, Y. Futaana, Ion escape from Mars as a function of solar wind conditions: a statistical study. Icarus 206, 40–49 (2010)

    Article  ADS  Google Scholar 

  • H. Nilsson, N.J.T. Edberg, G. Stenberg, S. Barabash, M. Holmstrom, Y. Futaana, R. Lundin, A. Fedorov, Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus 215, 475–484 (2011)

    Article  ADS  Google Scholar 

  • D.J. Pawlowski, A.J. Ridley, Modeling the thermospheric response to solar flares. J. Geophys. Res. Space Phys. 113, A10309 (2008)

    Article  ADS  Google Scholar 

  • D.J. Pawlowski, A.J. Ridley, Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere. Radio Sci. 44, RS0A23 (2009a)

    Article  Google Scholar 

  • D.J. Pawlowski, A.J. Ridley, Quantifying the effect of thermospheric parameterization in a global model. J. Atmos. Sol.-Terr. Phys. 71, 2017–2026 (2009b)

    Article  ADS  Google Scholar 

  • D.J. Pawlowski, S.W. Bougher, A.J. Ridley, J.R. Murphy, Modeling the Martian upper atmosphere using the Mars global ionosphere-thermosphere model. Publication: American Geophysical Union, Fall Meeting 2012, abstract #SA44A-01

  • K. Powell, P. Roe, T. Linde, T. Gombosi, D. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. Ramstad, Y. Futaana, S. Barabash, H. Nilsson, S.M. del Campo, R. Lundin, K. Schwingenschuh, Phobos 2/ASPERA data revisited: planetary ion escape rate from Mars near the 1989 solar maximum. Geophys. Res. Lett. 40, 477–481 (2013)

    Article  ADS  Google Scholar 

  • E. Richer, G.M. Chanteur, R. Modolo, E. Dubinin, Reflection of solar wind protons on the Martian bow shock: investigations by means of 3-dimensional simulations. Geophys. Res. Lett. 39, 17 (2012)

    Article  Google Scholar 

  • A.J. Ridley, Y. Deng, G. Tóth, The global ionosphere–thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006)

    Article  ADS  Google Scholar 

  • S. Robbins, B. Hynek, R. Lillis, W. Bottke, Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225, 173–184 (2013)

    Article  ADS  Google Scholar 

  • R. Schunk, A. Nagy, Ionospheres (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  • V. Sheel, S.A. Haider, P. Withers, K. Kozarev, I. Jun, S. Kang, G. Gronoff, C. Simon Wedlund, Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J. Geophys. Res. 117, A05312 (2012)

    Article  ADS  Google Scholar 

  • M. Smith, Thermal emission spectrometer observations of Martian planet-encircling dust storm 2001A. Icarus 157, 259–263 (2002)

    Article  ADS  Google Scholar 

  • M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009)

    Article  ADS  Google Scholar 

  • M.D. Smith, S.W. Bougher, T. Encrenaz, F. Forget, A. Kleinbohl, Thermal structure and composition of the Mars atmosphere, in Mars Book II (2014)

    Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, E02009 (2009)

    ADS  Google Scholar 

  • V.A. Tenishev, M.R. Combi, DSMC simulation of the cometary coma. AIP Conf. Proc. 663, 696–703 (2003)

    Article  ADS  Google Scholar 

  • N. Terada, Y.N. Kulikov, H. Lammer, H.I. Lichtenegger, T. Tanaka, H. Shinagawa, T. Zhang, Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009)

    Article  ADS  Google Scholar 

  • G. Tóth, I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. De Zeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, K.G. Powell, A.J. Ridley, I.I. Roussev, Q.F. Stout, O. Volberg, R.A. Wolf, S. Sazykin, A. Chan, B. Yu, J. Kóta, Space Weather Modeling Framework: a new tool for the space science community. J. Geophys. Res. 110, A12226 (2005)

    Article  ADS  Google Scholar 

  • D. Tyler, J.R. Barnes, R.M. Haberle, Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res. 107, 5018 (2002)

    Article  Google Scholar 

  • A.J. Tylka, New insights on solar energetic particles from Wind and ACE. J. Geophys. Res. 106, 25333 (2001)

    Article  ADS  Google Scholar 

  • D. Ulusen, D.A. Brain, J.G. Luhmann, D.L. Mitchell, Investigation of Mars’ ionospheric response to solar energetic particle events. J. Geophys. Res. Space Phys. 117, A5 (2012)

    Google Scholar 

  • A. Valeille, M.R. Combi, S.W. Bougher, V. Tenishev, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res., Planets 114, 11005 (2009a)

    Article  ADS  Google Scholar 

  • A. Valeille, V. Tenishev, S.W. Bougher, M.R. Combi, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. J. Geophys. Res. 114, E12005 (2009b)

    Article  Google Scholar 

  • A. Valeille, M.R. Combi, V. Tenishev, S.W. Bougher, A.F. Nagy, A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010)

    Article  ADS  Google Scholar 

  • M.I. Verigin, K.I. Gringauz, G.A. Kotova, A.P. Remizov, N.M. Shutte, H. Rosenbauer, S. Livi, A. Richter, W. Riedler, K. Schwingenschuh, K. Szegő, I. Apáthy, M. Tátrallyay, The dependence of the Martian magnetopause and bow shock on solar wind ram pressure according to Phobos 2 TAUS ion spectrometer measurements. J. Geophys. Res. 98, 1303 (1993)

    Article  ADS  Google Scholar 

  • R.M. Walker, Interaction of energetic nuclear particles in space with the Lunar surface. Annu. Rev. Earth Planet. Sci. 3, 99–128 (1975)

    Article  ADS  Google Scholar 

  • Y.-C. Wang, J.G. Luhmann, F. Leblanc, X. Fang, R.E. Johnson, Y. Ma, W.-H. Ip, L. Li, Modeling of the \(\mbox{O}^{+}\) pickup ion sputtering efficiency dependence on solar wind conditions for the Martian atmosphere. J. Geophys. Res. 119(1), 93–108 (2014). doi:10.1002/2013JE004413

    Article  Google Scholar 

  • D.F. Webb, Understanding CMEs and their source regions. J. Atmos. Sol.-Terr. Phys. 62, 1415–1426 (2000)

    Article  ADS  Google Scholar 

  • T.N. Woods, Solar irradiance variability during the October 2003 solar storm period. Geophys. Res. Lett. 31, L10802 (2004)

    Article  ADS  Google Scholar 

  • M. Yagi, F. Leblanc, J.Y. Chaufray, F. Gonzalez-Galindo, S. Hess, R. Modolo, Mars exospheric thermal and non-thermal components: seasonal and local variations. Icarus 221, 682–693 (2012)

    Article  ADS  Google Scholar 

  • K. Zahnle, J. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Lillis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lillis, R.J., Brain, D.A., Bougher, S.W. et al. Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Sci Rev 195, 357–422 (2015). https://doi.org/10.1007/s11214-015-0165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0165-8

Keywords

Navigation