Skip to main content

Advertisement

Log in

The Mars Atmosphere and Volatile Evolution (MAVEN) Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ACC:

Accelerometer

ACS:

Attitude Control System

APP:

Articulated Payload Platform

b.y.:

billion years

b.y.a.:

billion years ago

CME:

Coronal Mass Ejection

DSMC:

Direct Simulation Monte Carlo

EUV:

Extreme Ultraviolet light

EUV:

Extreme Ultraviolet sensor on the LPW instrument

eV:

Electron Volts

GCM:

General Circulation Model

GSFC:

Goddard Space Flight Center

HGA:

High-Gain Antenna

IMF:

Interplanetary Magnetic Field

IUVS:

Imaging Ultraviolet Spectrograph

LGA:

Low-Gain Antenna

LMD:

Laboratoire de Météorologie Dynamique

LPW:

Langmuir Probe and Waves instrument

MAG:

Magnetometer

MAVEN:

Mars Atmosphere and Volatile Evolution (Mission)

MGS:

Mars Global Surveyor

MHD:

Magnetohydrodynamic

MLI:

Multi-Layer Insulation

MOI:

Mars Orbit Insertion

MPB:

Magnetic Pile-up Boundary

MSL:

Mars Science Laboratory

NASA:

National Aeronautics and Space Administration

NASCAP:

NASA/Air Force Spacecraft Charging Analysis Program

NGIMS:

Neutral Gas and Ion Mass Spectrometer

OTM:

Orbital Trim Maneuver

PTE:

Periapsis Timing Estimator

RWA:

Reaction Wheel Assembly

SA:

Solar Arrays

SEP:

Solar Energetic Particle instrument

SEPs:

Solar Energetic Particles

SEU:

Single-Event Upset

SSL:

Space Science Laboratory

STATIC:

Suprathermal and Thermal Ion Composition instrument

SWEA:

Solar-Wind Electron Analyzer

SWIA:

Solar-Wind Ion Analyzer

TCM:

Trajectory Correction Maneuver

TWTA:

Traveling Wave Tube Assembly

UHF:

Ultra-high frequency

3D:

Three dimensional

References

  • M.H. Acuña et al., Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284, 790 (1999). doi:10.1126/science.284.5415.790

    Article  ADS  Google Scholar 

  • M. Acuna et al., Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23403–23417 (2001)

    Article  ADS  Google Scholar 

  • D.E. Anderson, C.W. Hord, J. Geophys. Res. 76, 6666 (1971)

    Article  ADS  Google Scholar 

  • L. Andersson, R.E. Ergun, I. Stewart, The combined atmospheric photochemical and ion tracing code: reproducing the Viking Landers result and initial outflow results. Icarus 206, 120–129 (2010). doi:10.1016/j.icarus.2009.07.009

    Article  ADS  Google Scholar 

  • M. André, A. Yau, Theories and observations of ion energization and outflow in the high latitude magnetosphere. Space Sci. Rev. 80(1), 27–48 (1997). doi:10.1023/A:1004921619885

    Article  ADS  Google Scholar 

  • D.N. Baker, S.G. Kanekal, X. Li, S.P. Monk, J. Goldstein, J.L. Burch, An extreme distortion of the Van Allen belt arising from the “Halloween” solar storm in 2003. Nature 432, 878–881 (2004)

    Article  ADS  Google Scholar 

  • V. Baker, The Channels of Mars (1982) (University of Texas Press, Austin)

    Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501–503 (2007). doi:10.1126/science.1134358

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435(7), 790–794 (2005). doi:10.1038/nature03603

    Article  ADS  Google Scholar 

  • J.P. Bibring, Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772), 400–404 (2006). doi:10.1126/science.1122659

    Article  ADS  Google Scholar 

  • S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0053-7

    Google Scholar 

  • L.H. Brace, Langmuir probe: measurements in the ionosphere, in AGU Geophysical Monograph 102, ed. by R. Pfaff (1998)

    Google Scholar 

  • L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982). doi:10.1016/0032-0633(82)90069-1

    Article  ADS  Google Scholar 

  • D.A. Brain, A.H. Baker, J. Briggs, J.P. Eastwood, J.S. Halekas, T.D. Phan, Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett. 37(1), 14108 (2010). doi:10.1029/2010GL043916

    ADS  Google Scholar 

  • D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res. 108(A), 1424 (2003). doi:10.1029/2002JA009482

    Article  Google Scholar 

  • D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, On the origin of aurorae on Mars. Geophys. Res. Lett. 33(1), 01201 (2006). doi:10.1029/2005GL024782

    Article  ADS  Google Scholar 

  • S.H. Brecht, S.A. Ledvina, J.G. Luhmann, The Martian ionospheric loss rates versus solar EUV flux, in AGU Spring Meeting 2004 (2004). Abstract #SM44A-02

    Google Scholar 

  • M.H. Carr, Water on Mars (Oxford University Press, New York, 1996)

    Google Scholar 

  • M.S. Chaffin, J.-Y. Chaufray, I. Stewart, F. Montmessin, N.M. Schneider, J.-L. Bertaux, Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41(2), 314–320 (2014). doi:10.1002/2013GL058578

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars express. Icarus 195(2), 598–613 (2008). doi:10.1016/j.icarus.2008.01.009

    Article  ADS  Google Scholar 

  • P.A. Cloutier et al., Venus-like interaction of the solar wind with Mars. Geophys. Res. Lett. 26(1), 2685–2688 (1999). doi:10.1029/1999GL900591

    Article  ADS  Google Scholar 

  • D.H. Crider, J. Espley, D.A. Brain, D.L. Mitchell, J.E.P. Connerney, M.H. Acuña, Mars global surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars. J. Geophys. Res. (2005). doi:10.1029/2004JA010881

    Google Scholar 

  • S.M. Curry, M. Liemohn, X. Fang, Y. Ma, J. Espley, The influence of production mechanisms on pick-up ion loss at Mars. J. Geophys. Res. 118(1), 554–569 (2013). doi:10.1029/2012JA017665

    Article  Google Scholar 

  • E. Dubinin et al., Electric fields within the martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus 182(2), 337–342 (2006). doi:10.1016/j.icarus.2005.05.022

    Article  ADS  Google Scholar 

  • E. Dubinin, R. Lundin, O. Norberg, N. Pissarenko, Ion acceleration in the Martian tail—PHOBOS observations. J. Geophys. Res. 98, 3991–3997 (1993). doi:10.1029/92JA02233

    Article  ADS  Google Scholar 

  • J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuna, Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. (2008). doi:10.1029/2007GL032289

    Google Scholar 

  • N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37(3), 03107 (2010). doi:10.1029/2009GL041814

    Article  ADS  Google Scholar 

  • R.C. Elphic, A.I. Ershkovich, On the stability of the ionopause of Venus. J. Geophys. Res. 89, 997–1002 (1984)

    Article  ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33(1), 14103 (2006). doi:10.1029/2006GL025785

    Article  ADS  Google Scholar 

  • J.R. Espley, Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. (2004). doi:10.1029/2003JA010193

    Google Scholar 

  • J.R. Espley, Low-frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. (2005). doi:10.1029/2004JA010935

    Google Scholar 

  • X. Fang, M.W. Liemohn, A.F. Nagy, Y. Ma, D.L. De Zeeuw, J.U. Kozyra, T.H. Zurbuchen, Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res. 113(A), 02210 (2008). doi:10.1029/2007JA012736

    Article  Google Scholar 

  • X. Fang, S.W. Bougher, R.E. Johnson, J.G. Luhmann, Y. Ma, Y.-C. Wang, M.W. Liemohn, The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40(10), 1922–1927 (2013). doi:10.1002/grl.50415

    Article  ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Valley network-fed, open-basin lakes on Mars: distribution and implications for noachian surface and subsurface hydrology. Icarus 198(1), 37–56 (2008). doi:10.1016/j.icarus.2008.06.016

    Article  ADS  Google Scholar 

  • A. Fedorov et al., Structure of the martian wake. Icarus 182(2), 329–336 (2006). doi:10.1016/j.icarus.2005.09.021

    Article  ADS  Google Scholar 

  • J.L. Fox, Upper limits to the outflow of ions at Mars: implications for atmospheric evolution. Geophys. Res. Lett. 24, 2901 (1997). doi:10.1029/97GL52842

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009). doi:10.1016/j.icarus.2009.07.005

    Article  ADS  Google Scholar 

  • Y. Futaana et al., Mars express and Venus express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56(6), 873–880 (2008). doi:10.1016/j.pss.2007.10.014

    Article  ADS  Google Scholar 

  • S.B. Ganguli, The polar wind. Rev. Geophys. 34(3), 311–348 (1996). doi:10.1029/96RG00497

    Article  ADS  Google Scholar 

  • J.M. Grebowsky, S.A. Curtis, Venus nightside ionospheric holes—the signatures of parallel electric field acceleration regions. Geophys. Res. Lett. 8, 1273–1276 (1981). doi:10.1029/GL008i012p01273

    Article  ADS  Google Scholar 

  • M.R.T. Hoke, B.M. Hynek, Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114(E), 08002 (2009). doi:10.1029/2008JE003247

    Article  Google Scholar 

  • M.R.T. Hoke, B.M. Hynek, G.E. Tucker, Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312(1), 1–12 (2011). doi:10.1016/j.epsl.2011.09.053

    Article  ADS  Google Scholar 

  • B.M. Jakosky, R.M. Haberle, The seasonal behavior of water on Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 969–1016

    Google Scholar 

  • B.M. Jakosky, J.H. Jones, Evolution of water on Mars. Nature 370, 328–329 (1994)

    Article  ADS  Google Scholar 

  • B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994). doi:10.1006/icar.1994.1145. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • H. Jin, T. Mukai, T. Tanaka, K. Maezawa, Oxygen ions escaping from the dayside Martian upper atmosphere, in Advances in Space Research, vol. 27 (2001), pp. 1825–1830

    Google Scholar 

  • R.E. Johnson, Plasma-induced sputtering of an atmosphere. Space Sci. Rev. 69(3), 215–253 (1994). doi:10.1007/BF02101697

    Article  ADS  Google Scholar 

  • R.E. Johnson, J.G. Luhmann, Sputter contribution to the atmospheric corona on Mars. J. Geophys. Res. 103, 3649 (1998). doi:10.1029/97JE03266

    Article  ADS  Google Scholar 

  • J.F. Kasting, CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991). doi:10.1016/0019-1035(91)90137-I. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • A.M. Krymskii, T.K. Breus, N.F. Ness, M.H. Acuña, J.E.P. Connerney, D.H. Crider, D.L. Mitchell, S.J. Bauer, Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. J. Geophys. Res. 107(A), 1245 (2002). doi:10.1029/2001JA000239

    Article  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 165(1), 9–25 (2003). doi:10.1016/S0019-1035(03)00170-2

    Article  ADS  Google Scholar 

  • J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170(2), 343–364 (2004). doi:10.1016/j.icarus.2004.04.005

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Role of molecular species in pickup ion sputtering of the Martian atmosphere. J. Geophys. Res., Planets 107(E), 5010 (2002). doi:10.1029/2000JE001473

    Article  ADS  Google Scholar 

  • F. Leblanc, J.G. Luhmann, R.E. Johnson, E. Chassefiere, Some expected impacts of a solar energetic particle event at Mars. J. Geophys. Res. 107(A), 1058 (2002). doi:10.1029/2001JA900178

    Article  Google Scholar 

  • R.J. Lillis, J.H. Engel, D.L. Mitchell, D.A. Brain, R.P. Lin, S.W. Bougher, M.H. Acuña, Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophys. Res. Lett. 32(2), 23204 (2005). doi:10.1029/2005GL024337

    Article  ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J.L. Fox, J. Deighan, X. Fang, Y.-C. Wang, Y. Lee, C. Dong, Y. Ma, T.E. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time with MAVEN. Space Sci. Rev. (2014, in review)

  • J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by O(+) pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992). doi:10.1029/92GL02485. ISSN 0094-8276

    Article  ADS  Google Scholar 

  • J. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars—spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991)

    Article  ADS  Google Scholar 

  • R. Lundin et al., Auroral plasma acceleration above Martian magnetic anomalies. Space Sci. Rev. 126(1), 333–354 (2006a). doi:10.1007/s11214-006-9086-x

    ADS  Google Scholar 

  • R. Lundin et al., Ionospheric plasma acceleration at Mars: ASPERA-3 results. Icarus 182(2), 308–319 (2006b). doi:10.1016/j.icarus.2005.10.035

    Article  ADS  Google Scholar 

  • R. Lundin, H. Borg, B. Hultqvist, A. Zakharov, R. Pellinen, First measurements of the ionospheric plasma escape from Mars. Nature 341, 609–612 (1989). doi:10.1038/341609a0. ISSN 0028-0836

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, C.R. Webster, S.K. Atreya, H. Franz, M. Wong, P.G. Conrad, D. Harpold, J.J. Jones, L.A. Leshin, H. Manning, T. Owen, R.O. Pepin, S. Squyres, M. Trainer (MSL Science Team), Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover. Science 341(6143), 263–266 (2013). doi:10.1126/science.1237966

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003)

    Article  ADS  Google Scholar 

  • M.A. Mandell, V.A. Davis, D.L. Cooke, A.T. Wheelock, C.J. Roth, Nascap-2k spacecraft charging code overview. IEEE Trans. Plasma Sci. 34(5), 2084–2093 (2006)

    Article  ADS  Google Scholar 

  • W.E. McClintock, N.M. Schneider, G.M. Holsclaw, J.T. Clarke, A.C. Hoskins, A.I.F. Stewart, F. Montmessin, R.V. Yelle, J. Deighan, The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0098-7

    MATH  Google Scholar 

  • M.B. McElroy, Mars: an evolving atmosphere. Science 175(4), 443–445 (1972). doi:10.1126/science.175.4020.443

    Article  ADS  Google Scholar 

  • M.B. McElroy, Y.L. Yung, Oxygen isotopes in the Martian atmosphere: implications for the evolution of volatiles. Planet. Space Sci. 14, 1107–1113 (1976)

    Article  ADS  Google Scholar 

  • M.B. McElroy, T.Y. Kong, Y.L. Yung, Photochemistry and evolution of Mars’ atmosphere—a Viking perspective. J. Geophys. Res. 82, 4379–4388 (1977). doi:10.1029/JS082i028p04379

    Article  ADS  Google Scholar 

  • D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106(E), 23419–23428 (2001). doi:10.1029/2000JE001435

    Article  ADS  Google Scholar 

  • T. Owen, J.P. Maillard, C. de Bergh, B.L. Lutz, Deuterium on Mars—the abundance of HDO and the value of D/H. Science 240, 1767–1770 (1988). doi:10.1126/science.240.4860.1767. ISSN 0036-8075

    Article  ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann, Auroral Plasma Physics (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  • J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. NASA Spec. Publ. 71, 203–224 (1987). doi:10.1016/0019-1035(87)90147-3

    Google Scholar 

  • R.M. Ramirez, R. Kopparapu, M.E. Zugger, T.D. Robinson, R. Freedman, J.F. Kasting, Warming early Mars with CO2 and H2. Nat. Geosci. 7(1), 59–63 (2014). doi:10.1038/ngeo2000

    Article  ADS  Google Scholar 

  • I. Ribas, The Sun and stars as the primary energy input in planetary atmospheres, in Solar and Stellar Variability: Impact on Earth and Planets, vol. 264 (2010), pp. 3–18. doi:10.1017/S1743921309992298

    Google Scholar 

  • I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622(1), 680–694 (2005). doi:10.1086/427977

    Article  ADS  Google Scholar 

  • S.W. Squyres et al., In situ evidence for an ancient aqueous environment at meridiani planum, Mars. Science 306(5), 1709–1714 (2004). doi:10.1126/science.1104559

    Article  ADS  Google Scholar 

  • R.A. Urata, O.B. Toon, Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate. Icarus 226(1), 229–250 (2013). doi:10.1016/j.icarus.2013.05.014

    Article  ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele (the MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341(6143), 260–263 (2013). doi:10.1126/science.1237961

    Article  ADS  Google Scholar 

  • P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44(3), 277–307 (2009). doi:10.1016/j.asr.2009.04.027

    Article  ADS  Google Scholar 

  • Y.L. Yung, J.S. Wen, J.P. Pinto, M. Allen, K.K. Pierce, S. Paulson, HDO in the Martian atmosphere—implications for the abundance of crustal water. Icarus 76(1), 146–159 (1988). doi:10.1016/0019-1035(88)90147-9

    Article  ADS  Google Scholar 

  • K.J. Zahnle, J.C.G. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. Space Phys. 20, 280–292 (1982). doi:10.1029/RG020i002p00280

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The MAVEN mission would not have been possible without the incredible dedication, commitment, and experience of the many hundreds of people (of all job classifications) who have worked on MAVEN. To call out a few by name would feel like a disservice to those not mentioned. They each have our incredible gratitude and appreciation for their efforts. In addition, we benefitted tremendously from the strong support from each of our partner organizations. Funding for the MAVEN mission was provided by NASA, with additional funding from CNES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Jakosky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakosky, B.M., Lin, R.P., Grebowsky, J.M. et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Sci Rev 195, 3–48 (2015). https://doi.org/10.1007/s11214-015-0139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0139-x

Keywords

Navigation