Skip to main content
Log in

Solar Cycle in the Heliosphere and Cosmic Rays

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Manifestations of the 11-year solar cycle and longer time-scale variability in the heliosphere and cosmic rays are considered. We briefly review the cyclic variability of such heliospheric parameters as solar wind speed and density and heliospheric magnetic field, open magnetic flux and latitude variations of the heliospheric current sheet. It is discussed whether the local in-situ observation near Earth can represent the global 3D heliospheric pattern. Variability of cosmic rays near Earth provides an indirect useful tool to study the heliosphere. We discuss details of the heliospheric modulation of galactic cosmic rays, as recorded at and near Earth, and their relation to the heliospheric conditions in the outer heliosphere. On the other hand, solar energetic particles can serve as probes for explosive phenomena on the Sun and conditions in the corona and inner heliosphere. The occurrence of major solar proton events depicts an overall tendency to follow the solar cycle but individual events may appear at different phases of the solar cycle, as defined by various factors. The solar cycle in the heliosphere and cosmic rays depicts a complex pattern which includes different processes and cannot be described by a simple correlation with sunspot number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.wdcb.ru/stp/data/PRCATFINAL/.

  2. The official master list of GLEs is available at http://gle.oulu.fi.

Abbreviations

AU:

Astronomical unit (the mean Sun-Earth distance, ≈1.5×1011 m)

CME:

Coronal mass ejection

CR:

Cosmic rays

GLE:

Ground-level enhancement of cosmic rays

GCR:

Galactic cosmic rays

HCS:

Heliospheric current sheet

HMF:

Heliospheric magnetic field

IC:

Ionization chamber

MHD:

Magnetohydrodynamics

NM:

Neutron monitor

OMF:

Open magnetic flux

SEP:

Solar energetic particles

SPE:

Solar proton events

SSN:

Sunspot number

References

  • N. Adams, A temporary increase in the neutron component of cosmic rays. Philos. Mag. 41, 503–505 (1950)

    Google Scholar 

  • O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, M.P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, V. Formato, A.M. Galper, L. Grishantseva, A.V. Karelin, S.V. Koldashov, S. Koldobskiy, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, A.G. Mayorov, W. Menn, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, J. Wu, G. Zampa, N. Zampa, V.G. Zverev, M.S. Potgieter, E.E. Vos, Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 765, 91 (2013). doi:10.1088/0004-637X/765/2/91

    ADS  Google Scholar 

  • H.S. Ahluwalia, M.M. Fikani, R.C. Ygbuhay, Rigidity dependence of 11 year cosmic ray modulation: implication for theories. J. Geophys. Res. 115, 07101 (2010). doi:10.1029/2009JA014798

    Google Scholar 

  • K. Alanko, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation strength: effective neutron monitor energy. Adv. Space Res. 32, 615–620 (2003)

    ADS  Google Scholar 

  • K. Alanko-Huotari, K. Mursula, I.G. Usoskin, G.A. Kovaltsov, Global heliospheric parameters and cosmic-ray modulation: an empirical relation for the last decades. Sol. Phys. 238, 391–404 (2006). doi:10.1007/s11207-006-0233-z

    ADS  Google Scholar 

  • K. Alanko-Huotari, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Cyclic variations of the heliospheric tilt angle and cosmic ray modulation. Adv. Space Res. 40, 1064–1069 (2007a). doi:10.1016/j.asr.2007.02.007

    ADS  Google Scholar 

  • K. Alanko-Huotari, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet. J. Geophys. Res. 112, 08101 (2007b). doi:10.1029/2007JA012280

    Google Scholar 

  • A. Balogh, G. Erdös, The heliospheric magnetic field. Space Sci. Rev. 176, 177–215 (2013). doi:10.1007/s11214-011-9835-3

    ADS  Google Scholar 

  • A. Balogh, L.J. Lanzerotti, S.T. Suess, The Heliosphere Through the Solar Activity Cycle (Springer, Chichester, 2008). doi:10.1007/978-3-540-74302-6

    Google Scholar 

  • G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Change in the rigidity dependence of the galactic cosmic ray modulation in 2008–2009. Adv. Space Res. 49, 784–790 (2012). doi:10.1016/j.asr.2011.12.002

    ADS  Google Scholar 

  • G.A. Bazilevskaya, M.B. Krainev, A.K. Svirzhevskaya, N.S. Svirzhevsky, Galactic cosmic rays and parameters of the interplanetary medium near solar activity minima. Cosm. Res. 51, 29–36 (2013). doi:10.1134/S0010952513010012

    ADS  Google Scholar 

  • J. Beer, S. Tobias, N. Weiss, An active Sun throughout the Maunder minimum. Sol. Phys. 181, 237–249 (1998)

    ADS  Google Scholar 

  • J. Beer, K. McCracken, R. von Steiger, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments (Springer, Berlin, 2012)

    Google Scholar 

  • A.-M. Berggren, J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S.J. Johnsen, J. Abreu, B.M. Vinther, A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett. 36, 11801 (2009)

    ADS  Google Scholar 

  • G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J. Eyles, The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995). doi:10.1007/BF00733434

    ADS  Google Scholar 

  • L.F. Burlaga, M.L. Goldstein, F.B. McDonald, A.J. Lazarus, Cosmic ray modulation and turbulent interaction regions near 11 AU. J. Geophys. Res. 90, 12027–12039 (1985). doi:10.1029/JA090iA12p12027

    ADS  Google Scholar 

  • R.A. Caballero-Lopez, H. Moraal, Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 109, 01101 (2004). doi:10.1029/2003JA010098

    Google Scholar 

  • R.A. Caballero-Lopez, H. Moraal, Cosmic-ray yield and response functions in the atmosphere. J. Geophys. Res. 117 (2012). doi:10.1029/2012JA017794

  • H.V. Cane, D.V. Reames, T.T. von Rosenvinge, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555–9567 (1988). doi:10.1029/JA093iA09p09555

    ADS  Google Scholar 

  • H.V. Cane, G. Wibberenz, I.G. Richardson, T.T. von Rosenvinge, Cosmic ray modulation and the solar magnetic field. Geophys. Res. Lett. 26, 565–568 (1999). doi:10.1029/1999GL900032

    ADS  Google Scholar 

  • A.N. Charakhchyan, Reviews of topical problems: investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun. Sov. Phys. Usp. 7, 358–374 (1964)

    ADS  Google Scholar 

  • F. Clette, L. Svalgaard, J.M. Vaquero, E.W. Cliver, Revisiting the sunspot number: a 400-year perspective on the solar cycle. Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0074-2

    Google Scholar 

  • E.W. Cliver, The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J. 639, 1206–1217 (2006). doi:10.1086/499765

    ADS  Google Scholar 

  • E.W. Cliver, A revised classification scheme for solar energetic particle events. Cent. Eur. Astrophys. Bull. 33, 253–270 (2009a)

    ADS  Google Scholar 

  • E.W. Cliver, History of research on solar energetic particle (SEP) events: the evolving paradigm, in IAU Symposium, ed. by N. Gopalswamy, D.F. Webb, vol. 257 (2009b), pp. 401–412. doi:10.1017/S1743921309029639

    Google Scholar 

  • E.W. Cliver, The extended cycle of solar activity and the Sun’s 22-yr magnetic cycle. Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0093-2

    Google Scholar 

  • E.W. Cliver, A.G. Ling, 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. Lett. 551, 189–192 (2001a). doi:10.1086/320022

    ADS  Google Scholar 

  • E.W. Cliver, A.G. Ling, Coronal mass ejections, open magnetic flux, and cosmic-ray modulation. Astrophys. J. 556, 432–437 (2001b). doi:10.1086/321570

    ADS  Google Scholar 

  • E.W. Cliver, A.G. Ling, The floor in the solar wind magnetic field revisited. Sol. Phys. 274, 285–301 (2011). doi:10.1007/s11207-010-9657-6

    ADS  Google Scholar 

  • E.W. Cliver, S.W. Kahler, M.A. Shea, D.F. Smart, Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 keV electrons in solar cosmic ray flares. Astrophys. J. 260, 362–370 (1982). doi:10.1086/160261

    ADS  Google Scholar 

  • E.W. Cliver, V. Boriakoff, K.H. Bounar, Geomagnetic activity and the solar wind during the Maunder minimum. Geophys. Res. Lett. 25, 897–900 (1998). doi:10.1029/98GL00500

    ADS  Google Scholar 

  • E.W. Cliver, I.G. Richardson, A.G. Ling, Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. 176, 3–19 (2013). doi:10.1007/s11214-011-9746-3

    ADS  Google Scholar 

  • E.W. Cliver, A.J. Tylka, W.F. Dietrich, A.G. Ling, On a solar origin for the cosmogenic nuclide event of 775 AD Astrophys. J. 781, 32 (2014). doi:10.1088/0004-637X/781/1/32

    ADS  Google Scholar 

  • A.Z. Dolginov, I. Toptygin, Multiple scattering of particles in a magnetic field with random inhomogeneities. Sov. Phys. JETP 24, 1195 (1967)

    ADS  Google Scholar 

  • L.I. Dorman, Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas (Kluwer Academic, Dordrecht, 2006)

    Google Scholar 

  • S.P. Duggal, Relativistic solar cosmic rays. Rev. Geophys. Space Phys. 17, 1021–1058 (1979). doi:10.1029/RG017i005p01021

    ADS  Google Scholar 

  • J.A. Eddy, The Maunder minimum. Science 192, 1189–1202 (1976)

    ADS  Google Scholar 

  • A.G. Emslie, B.R. Dennis, A.Y. Shih, P.C. Chamberlin, R.A. Mewaldt, C.S. Moore, G.H. Share, A. Vourlidas, B.T. Welsch, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71 (2012). doi:10.1088/0004-637X/759/1/71

    ADS  Google Scholar 

  • S.E.S. Ferreira, M.S. Potgieter, Long-term cosmic-ray modulation in the heliosphere. Astrophys. J. 603, 744–752 (2004). doi:10.1086/381649

    ADS  Google Scholar 

  • L.A. Fisk, Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15554 (1996). doi:10.1029/96JA01005

    ADS  Google Scholar 

  • S.E. Forbush, Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys. Rev. 70, 771–772 (1946). doi:10.1103/PhysRev.70.771

    ADS  Google Scholar 

  • S.E. Forbush, World-wide cosmic-ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954)

    ADS  Google Scholar 

  • S.E. Forbush, T.B. Stinchcomb, M. Schein, The extraordinary increase of cosmic-ray intensity on November 19, 1949. Phys. Rev. 79, 501–504 (1950). doi:10.1103/PhysRev.79.501

    ADS  Google Scholar 

  • J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev. 176, 73–88 (2013). doi:10.1007/s11214-011-9763-2

    ADS  Google Scholar 

  • S.E. Gibson, G. de Toma, B. Emery, P. Riley, L. Zhao, Y. Elsworth, R.J. Leamon, J. Lei, S. McIntosh, R.A. Mewaldt, B.J. Thompson, D. Webb, The whole heliosphere interval in the context of a long and structured solar minimum: an overview from Sun to Earth. Sol. Phys. 274, 5–27 (2011). doi:10.1007/s11207-011-9921-4

    ADS  Google Scholar 

  • L.J. Gleeson, W.I. Axford, Cosmic rays in the interplanetary medium. Astrophys. J. Lett. 149, 115 (1967). doi:10.1086/180070

    ADS  Google Scholar 

  • L.J. Gleeson, W.I. Axford, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011–1026 (1968)

    ADS  Google Scholar 

  • M.N. Gnevyshev, On the 11-years cycle of solar activity. Sol. Phys. 1, 107–120 (1967). doi:10.1007/BF00150306

    ADS  Google Scholar 

  • M.N. Gnevyshev, Essential features of the 11-year solar cycle. Sol. Phys. 51, 175–183 (1977). doi:10.1007/BF00240455

    ADS  Google Scholar 

  • N. Gopalswamy, S. Yashiro, G. Michałek, M.L. Kaiser, R.A. Howard, D.V. Reames, R. Leske, T. von Rosenvinge, Interacting coronal mass ejections and solar energetic particles. Astrophys. J. Lett. 572, 103–107 (2002). doi:10.1086/341601

    ADS  Google Scholar 

  • N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg, R.A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, 12105 (2004). doi:10.1029/2004JA010602

    Google Scholar 

  • N. Gopalswamy, S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, R. Howard, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295–313 (2009). doi:10.1007/s11038-008-9282-7

    ADS  Google Scholar 

  • N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23–60 (2012). doi:10.1007/s11214-012-9890-4

    ADS  Google Scholar 

  • N. Gopalswamy, H. Xie, S. Akiyama, S. Yashiro, I.G. Usoskin, J.M. Davila, The first ground level enhancement event of solar cycle 24: direct observation of shock formation and particle release heights. Astrophys. J. Lett. 765, 30 (2013). doi:10.1088/2041-8205/765/2/L30

    ADS  Google Scholar 

  • N. Gopalswamy, S. Akiyama, S. Yashiro, G. Michalek, H. Xie, P. Mäkelä, Geophys. Res. Lett. (2014, submitted)

  • P.K.F. Grieder, Cosmic Rays at Earth (Elsevier Science, Amsterdam, 2001)

    Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7(1) (2010). http://www.livingreviews.org/lrsp-2010-1

  • B. Heber, Cosmic rays through the solar hale cycle. Insights from Ulysses. Space Sci. Rev. 176, 265–278 (2013). doi:10.1007/s11214-011-9784-x

    ADS  Google Scholar 

  • B. Heber, M.S. Potgieter, Cosmic rays at high heliolatitudes. Space Sci. Rev. 127, 117–194 (2006). doi:10.1007/s11214-006-9085-y

    ADS  Google Scholar 

  • B. Heber, A. Kopp, J. Gieseler, R. Müller-Mellin, H. Fichtner, K. Scherer, M.S. Potgieter, S.E.S. Ferreira, Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum. Astrophys. J. 699, 1956–1963 (2009). doi:10.1088/0004-637X/699/2/1956

    ADS  Google Scholar 

  • H.S. Hudson, Global properties of solar flares. Space Sci. Rev. 158, 5–41 (2011). doi:10.1007/s11214-010-9721-4

    ADS  Google Scholar 

  • T. Jämsén, I.G. Usoskin, T. Räihä, J. Sarkamo, G.A. Kovaltsov, Case study of Forbush decreases: energy dependence of the recovery. Adv. Space Res. 40, 342–347 (2007). doi:10.1016/j.asr.2007.02.025

    ADS  Google Scholar 

  • J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480 (1966). doi:10.1086/148912

    ADS  Google Scholar 

  • J.R. Jokipii, E.H. Levy, Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophys. J. Lett. 213, 85–88 (1977). doi:10.1086/182415

    ADS  Google Scholar 

  • S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947–20956 (2001). doi:10.1029/2000JA002231

    ADS  Google Scholar 

  • S.W. Kahler, Prospects for future enhanced solar energetic particle events and the effects of weaker heliospheric magnetic fields. J. Geophys. Res. 113, 11102 (2008). doi:10.1029/2008JA013168

    Google Scholar 

  • S.W. Kahler, A. Vourlidas, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, 12-01 (2005). doi:10.1029/2005JA011073

    Google Scholar 

  • G.A. Kovaltsov, I.G. Usoskin, E.W. Cliver, W.F. Dietrich, A.J. Tylka, Relation between >200 MeV solar energetic protons and atmospheric production of cosmogenic radionuclides. Sol. Phys. (2014). doi:10.1007/s11207-014-0093-0

    Google Scholar 

  • M.B. Krainev, M.S. Kalinin, On the description of the 11- and 22-year cycles in the GCR intensity. J. Phys. Conf. Ser. 409(1), 012155 (2013). doi:10.1088/1742-6596/409/1/012155

    ADS  Google Scholar 

  • M.B. Krainev, G.A. Bazilevskaya, S.K. Gerasimova, P.A. Krivoshapkin, G.F. Krymsky, S.A. Starodubtsev, Y.I. Stozhkov, N.S. Svirzhevsky, On the status of the sunspot and magnetic cycles in the galactic cosmic ray intensity. J. Phys. Conf. Ser. 409(1), 012016 (2013). doi:10.1088/1742-6596/409/1/012016

    ADS  Google Scholar 

  • G.F. Krymskij, Modulation of Cosmic Rays in Interplanetary Space (1969)

    Google Scholar 

  • I. Lange, S.E. Forbush, Further note on the effect on cosmic-ray intensity of the magnetic storm of March 1, 1942. Terr. Magn. Atmos. Electr. 47, 331 (1942). doi:10.1029/TE047i004p00331

    Google Scholar 

  • M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10, 4 (2013). doi:10.12942/lrsp-2013-4

    ADS  Google Scholar 

  • M. Lockwood, M.J. Owens, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys. Res. 116, 04109 (2011). doi:10.1029/2010JA016220

    Google Scholar 

  • M. Lockwood, M.J. Owens, Implications of the recent low solar minimum for the solar wind during the Maunder minimum. Astrophys. J. Lett. 781, 7 (2014). doi:10.1088/2041-8205/781/1/L7

    ADS  Google Scholar 

  • M. Lockwood, R. Stamper, M.N. Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437–439 (1999). doi:10.1038/20867

    ADS  Google Scholar 

  • M. Lockwood, A.P. Rouillard, I.D. Finch, The rise and fall of open solar flux during the current Grand Solar Maximum. Astrophys. J. 700, 937–944 (2009). doi:10.1088/0004-637X/700/2/937

    ADS  Google Scholar 

  • H. Mavromichalaki, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, M. Papailiou, E. Eroshenko, A. Belov, V. Yanke, E.O. Flückiger, R. Bütikofer, M. Parisi, M. Storini, K.-L. Klein, N. Fuller, C.T. Steigies, O.M. Rother, B. Heber, R.F. Wimmer-Schweingruber, K. Kudela, I. Strharsky, R. Langer, I. Usoskin, A. Ibragimov, A. Chilingaryan, G. Hovsepyan, A. Reymers, A. Yeghikyan, O. Kryakunova, E. Dryn, N. Nikolayevskiy, L. Dorman, L. Pustil’Nik, Applications and usage of the real-time Neutron Monitor database. Adv. Space Res. 47, 2210–2222 (2011). doi:10.1016/j.asr.2010.02.019

    ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103 (2008). doi:10.1029/2008GL034896

    ADS  Google Scholar 

  • D.J. McComas, D. Alexashov, M. Bzowski, H. Fahr, J. Heerikhuisen, V. Izmodenov, M.A. Lee, E. Möbius, N. Pogorelov, N.A. Schwadron, G.P. Zank, The heliosphere’s interstellar interaction: no bow shock. Science 336, 1291 (2012). doi:10.1126/science.1221054

    ADS  Google Scholar 

  • D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013). doi:10.1088/0004-637X/779/1/2

    ADS  Google Scholar 

  • K.G. McCracken, Heliomagnetic field near Earth, 1428–2005. J. Geophys. Res. 112, 09106 (2007a). doi:10.1029/2006JA012119

    Google Scholar 

  • K.G. McCracken, High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future. Space Weather 5, 7004 (2007b). doi:10.1029/2006SW000295

    ADS  Google Scholar 

  • K.G. McCracken, G.A.M. Dreschhoff, D.F. Smart, M.A. Shea, A study of the frequency of occurrence of large-fluence solar proton events and the strength of the interplanetary magnetic field. Sol. Phys. 224, 359–372 (2004). doi:10.1007/s11207-005-5257-2

    ADS  Google Scholar 

  • K.G. McCracken, G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950. J. Geophys. Res. 106, 21585–21598 (2001)

    ADS  Google Scholar 

  • K.G. McCracken, H. Moraal, M.A. Shea, The high-energy impulsive ground-level enhancement. Astrophys. J. 761, 101 (2012). doi:10.1088/0004-637X/761/2/101

    ADS  Google Scholar 

  • F.B. McDonald, Cosmic-ray modulation in the heliosphere a phenomenological study. Space Sci. Rev. 83, 33–50 (1998)

    ADS  Google Scholar 

  • F.B. McDonald, W.R. Webber, D.V. Reames, Unusual time histories of galactic and anomalous cosmic rays at 1 AU over the deep solar minimum of cycle 23/24. Geophys. Res. Lett. 371, 18101 (2010). doi:10.1029/2010GL044218

    ADS  Google Scholar 

  • R.A. Mewaldt, Cosmic rays in the heliosphere: requirements for future observations. Space Sci. Rev. 176, 365–390 (2013). doi:10.1007/s11214-012-9922-0

    ADS  Google Scholar 

  • R.A. Mewaldt, C.M.S. Cohen, J. Giacalone, G.M. Mason, E.E. Chollet, M.I. Desai, D.K. Haggerty, M.D. Looper, R.S. Selesnick, A. Vourlidas, How efficient are coronal mass ejections at accelerating solar energetic particles?, in AIP Conf. Ser., ed. by G. Li, Q. Hu, O. Verkhoglyadova, G.P. Zank, R.P. Lin, J. Luhmann, vol. 1039 (2008), pp. 111–117. doi:10.1063/1.2982431

    Google Scholar 

  • R.A. Mewaldt, A.J. Davis, K.A. Lave, R.A. Leske, E.C. Stone, M.E. Wiedenbeck, W.R. Binns, E.R. Christian, A.C. Cummings, G.A. de Nolfo, M.H. Israel, A.W. Labrador, T.T. von Rosenvinge, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, 1–6 (2010). doi:10.1088/2041-8205/723/1/L1

    ADS  Google Scholar 

  • A.L. Mishev, L.G. Kocharov, I.G. Usoskin, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. 119, 670–679 (2014). doi:10.1002/2013JA019253

    Google Scholar 

  • H. Miyahara, K. Masuda, Y. Muraki, H. Furuzawa, H. Menjo, T. Nakamura, Cyclicity of solar activity during the Maunder minimum deduced from radiocarbon content. Sol. Phys. 224, 317–322 (2004). doi:10.1007/s11207-005-6501-5

    ADS  Google Scholar 

  • F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan. Nature 486, 240–242 (2012). doi:10.1038/nature11123

    ADS  Google Scholar 

  • F. Miyake, K. Masuda, T. Nakamura, Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings. J. Geophys. Res. 118, 1–5 (2013). doi:10.1002/2012JA018320

    Google Scholar 

  • H. Moraal, P.H. Stoker, Long-term neutron monitor observations and the 2009 cosmic ray maximum. J. Geophys. Res. 115, 12109 (2010). doi:10.1029/2010JA015413

    Google Scholar 

  • H. Moraal, A. Belov, J.M. Clem, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev. 93, 285–303 (2000). doi:10.1023/A:1026504814360

    ADS  Google Scholar 

  • K. Mursula, T. Hiltula, Bashful ballerina: southward shifted heliospheric current sheet. Geophys. Res. Lett. 30, 2135 (2003). doi:10.1029/2003GL018201

    ADS  Google Scholar 

  • H.V. Neher, Cosmic-ray particles that changed from 1954 to 1958 to 1965. J. Geophys. Res. 72, 1527 (1967). doi:10.1029/JZ072i005p01527

    ADS  Google Scholar 

  • H.V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima J. Geophys. Res. 76, 1637–1651 (1971). doi:10.1029/JA076i007p01637

    ADS  Google Scholar 

  • H.W. Newton, The Face of the Sun (Penguin Books, Harmondsworth, 1958)

    Google Scholar 

  • M.J. Owens, R.J. Forsyth, The heliospheric magnetic field. Living Rev. Sol. Phys. 10, 5 (2013). doi:10.12942/lrsp-2013-5

    ADS  Google Scholar 

  • M.J. Owens, I. Usoskin, M. Lockwood, Heliospheric modulation of galactic cosmic rays during grand solar minima: past and future variations. Geophys. Res. Lett. 39, 19102 (2012). doi:10.1029/2012GL053151

    ADS  Google Scholar 

  • E.N. Parker, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965)

    ADS  Google Scholar 

  • M.I. Pishkalo, Reconstruction of the heliospheric current sheet tilts using sunspot numbers. Sol. Phys. 233, 277–290 (2006). doi:10.1007/s11207-006-1981-5

    ADS  Google Scholar 

  • N.V. Pogorelov, S.T. Suess, S.N. Borovikov, R.W. Ebert, D.J. McComas, G.P. Zank, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. IV. Solar cycle model based on Ulysses observations. Astrophys. J. 772, 2 (2013). doi:10.1088/0004-637X/772/1/2

    ADS  Google Scholar 

  • M. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10, 3 (2013). doi:10.12942/lrsp-2013-3

    ADS  Google Scholar 

  • M.S. Potgieter, R. Strauss, At what rigidity does the solar modulation of galactic cosmic rays begin? in 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013), p. 156

    Google Scholar 

  • M.S. Potgieter, E.E. Vos, M. Boezio, N. De Simone, V. Di Felice, V. Formato, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Sol. Phys. 289, 391–406 (2014). doi:10.1007/s11207-013-0324-6

    ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi:10.1023/A:1005105831781

    ADS  Google Scholar 

  • D.V. Reames, The two sources of solar energetic particles. Space Sci. Rev. 53–92 (2013). doi:10.1007/s11214-013-9958-9

  • I.G. Richardson, Geomagnetic activity during the rising phase of solar cycle 24. J. Space Weather Space Clim. 3(26), 260000 (2013). doi:10.1051/swsc/2013031

    Google Scholar 

  • J.D. Richardson, N.A. Schwadron, in The Limits of Our Solar System, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (University of Arizona Press, Tucson, 2008), pp. 443–463

    Google Scholar 

  • I.G. Richardson, H.V. Cane, E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res. 107, 1187 (2002). doi:10.1029/2001JA000504

    Google Scholar 

  • M.A. Shea, D.F. Smart, A summary of major solar proton events. Sol. Phys. 127, 297–320 (1990)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, Significant proton events of solar cycle 22 and a comparison with events of previous solar cycles. Adv. Space Res. 14, 631–638 (1994). doi:10.1016/0273-1177(94)90518-5

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, History of solar proton event observations. Nucl. Phys. B, Proc. Suppl. 39, 16–25 (1995)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 171, 161–188 (2012). doi:10.1007/s11214-012-9923-z

    ADS  Google Scholar 

  • Y. Shikaze, S. Haino, K. Abe, H. Fuke, T. Hams, K.C. Kim, Y. Makida, S. Matsuda, J.W. Mitchell, A.A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J.F. Ormes, T. Sanuki, M. Sasaki, E.S. Seo, R.E. Streitmatter, J. Suzuki, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, Measurements of 0.2 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astropart. Phys. 28, 154–167 (2007). doi:10.1016/j.astropartphys.2007.05.001

    ADS  Google Scholar 

  • J.A. Simpson, Cosmic radiation neutron intensity monitor, in Annals of the Int. Geophysical Year IV, Part VII (Pergamon Press, London, 1958), p. 351

    Google Scholar 

  • J.A. Simpson, The cosmic ray nucleonic component: the invention and scientific uses of the Neutron Monitor—(keynote lecture). Space Sci. Rev. 93, 11–32 (2000). doi:10.1023/A:1026567706183

    ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, H.E. Spence, L. Kepko, Two groups of extremely large >30 MeV solar proton fluence events. Adv. Space Res. 37, 1734–1740 (2006). doi:10.1016/j.asr.2005.09.008

    ADS  Google Scholar 

  • S.K. Solanki, M. Schüssler, M. Fligge, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408, 445–447 (2000)

    ADS  Google Scholar 

  • S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004). doi:10.1038/nature02995

    ADS  Google Scholar 

  • F. Steinhilber, J.A. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, 01104 (2010). doi:10.1029/2009JA014193

    Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005). doi:10.1126/science.1117684

    ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, An asymmetric solar wind termination shock. Nature 454, 71–74 (2008). doi:10.1038/nature07022

    ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013). doi:10.1126/science.1236408

    ADS  Google Scholar 

  • Y.I. Stozhkov, N.S. Svirzhevsky, G.A. Bazilevskaya, A.N. Kvashnin, V.S. Makhmutov, A.K. Svirzhevskaya, Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009). doi:10.1016/j.asr.2008.10.038

    ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modeling ground and space based cosmic ray observations. Adv. Space Res. 49, 392–407 (2012a). doi:10.1016/j.asr.2011.10.006

    ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, I. Büsching, A. Kopp, Modelling heliospheric current sheet drift in stochastic cosmic ray transport models. Astrophys. Space Sci. 339, 223–236 (2012b). doi:10.1007/s10509-012-1003-z

    ADS  Google Scholar 

  • L. Svalgaard, E.W. Cliver, Heliospheric magnetic field 1835–2009. J. Geophys. Res. 115, 09111 (2010). doi:10.1029/2009JA015069

    Google Scholar 

  • Z. S̆vestka, Proton flares before 1956. Bull. Astron. Inst. Czechoslov. 17, 262–270 (1966)

    ADS  Google Scholar 

  • Z. S̆vestka, P. Simon (eds.), Catalog of Solar Particle Events 1955–1969. Astrophysics and Space Science Library, vol. 49 (1975)

    Google Scholar 

  • N. Thakur, N. Gopalswamy, H. Xie, P. Makelä, S. Yashiro, S. Akiyama, J.M. Davila, Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys. J. Lett. 790, 13 (2014)

    ADS  Google Scholar 

  • S. Ting, The alpha magnetic spectrometer on the International Space Station. Nucl. Phys. B, Proc. Suppl. 243, 12–24 (2013). doi:10.1016/j.nuclphysbps.2013.09.028

    ADS  Google Scholar 

  • A. Tylka, W. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in 31th International Cosmic Ray Conference (Universal Academy Press, Lodź, 2009)

    Google Scholar 

  • A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319–1334 (2006). doi:10.1086/505106

    ADS  Google Scholar 

  • A.J. Tylka, C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, R.A. Mewaldt, C.K. Ng, D.V. Reames, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474–495 (2005). doi:10.1086/429384

    ADS  Google Scholar 

  • I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1

    ADS  Google Scholar 

  • I.G. Usoskin, G.A. Kovaltsov, Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys. J. 757, 92 (2012). doi:10.1088/0004-637X/757/1/92

    ADS  Google Scholar 

  • I.G. Usoskin, H. Kananen, K. Mursula, P. Tanskanen, G.A. Kovaltsov, Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103, 9567–9574 (1998). doi:10.1029/97JA03782

    ADS  Google Scholar 

  • I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation of cosmic rays and solar activity during the Maunder minimum. J. Geophys. Res. 106, 16039–16046 (2001). doi:10.1029/2000JA000105

    ADS  Google Scholar 

  • I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res. 110 (2005). doi:10.1029/2005JA011250

  • I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301–309 (2007). doi:10.1051/0004-6361:20077704

    ADS  Google Scholar 

  • I.G. Usoskin, G.A. Bazilevskaya, G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, 02104 (2011). doi:10.1029/2010JA016105

    Google Scholar 

  • I.G. Usoskin, B. Kromer, F. Ludlow, J. Beer, M. Friedrich, G.A. Kovaltsov, S.K. Solanki, L. Wacker, The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, 3 (2013). doi:10.1051/0004-6361/201321080

    ADS  Google Scholar 

  • I.G. Usoskin, G. Hulot, Y. Gallet, R. Roth, A. Licht, F. Joos, G.A. Kovaltsov, E. Thébault, A. Khokhlov, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, 10 (2014). doi:10.1051/0004-6361/201423391

    ADS  Google Scholar 

  • L.E.A. Vieira, S.K. Solanki, Evolution of the solar magnetic flux on time scales of years to millenia. Astron. Astrophys. 509, 100 (2010). doi:10.1051/0004-6361/200913276

    ADS  Google Scholar 

  • K.P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, The ULYSSES mission. Astron. Astrophys. Suppl. Ser. 92, 207–219 (1992)

    ADS  Google Scholar 

  • E.W. Wolff, M. Bigler, M.A.J. Curran, J.E. Dibb, M.M. Frey, M. Legrand, J.R. McConnell, The Carrington event not observed in most ice core nitrate records. Geophys. Res. Lett. 39, 08503 (2012). doi:10.1029/2012GL051603

    ADS  Google Scholar 

  • B. Zieger, M. Opher, N.A. Schwadron, D.J. McComas, G. Tóth, A slow bow shock ahead of the heliosphere. Geophys. Res. Lett. 40, 2923–2928 (2013). doi:10.1002/grl.50576

    ADS  Google Scholar 

Download references

Acknowledgements

This work is a result of the ISSI workshop “The Solar Activity Cycle: Physical Causes And Consequences”. G.B. acknowledges support of the RFBR grants 14-02-00905a, 14-02-10006k, 13-02-00585, 13-02-00931, 12-02-00215a and of the “Fundamental Properties of Matter and Astrophysics” Program of the Presidium of the RAS. E.W.C. acknowledges support from AFOSR Task 2301RDZ4. A.G.L. acknowledges support from AFRL contract FA8718-05-C-0036. G.K. was partly supported by the Academy of Finland. I.U.’s contribution is in the framework of the ReSoLVE Centre of Excellence (Academy of Finland, project no. 272157). Dr. Clifford Lopate is acknowledged for Huancayo/Haleakala NM data. Oulu NM data is available at http://cosmicrays.oulu.fi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya G. Usoskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevskaya, G.A., Cliver, E.W., Kovaltsov, G.A. et al. Solar Cycle in the Heliosphere and Cosmic Rays. Space Sci Rev 186, 409–435 (2014). https://doi.org/10.1007/s11214-014-0084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0084-0

Keywords

Navigation