Skip to main content
Log in

Magnetic Helicity, Tilt, and Twist

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Since its introduction to astro- and solar physics, the concept of helicity has proven to be useful in providing critical insights into physics of various processes from astrophysical dynamos, to magnetic reconnection and eruptive phenomena. Signature of helicity was also detected in many solar features, including orientation of solar active regions, or Joy’s law. Here we provide a summary of both solar phenomena and consider mutual relationship and its importance for the evolution of solar magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • V.I. Abramenko, T. Wang, V.B. Yurchishin, Analysis of electric current helicity in active regions on the basis of vector magnetograms. Sol. Phys. 168, 75–89 (1996). doi:10.1007/BF00145826

    ADS  Google Scholar 

  • V.I. Abramenko, T. Wang, V.B. Yurchishin, Electric current helicity in 40 active regions in the maximum of solar cycle 22. Sol. Phys. 174, 291–296 (1997). doi:10.1023/A:1004957515498

    ADS  Google Scholar 

  • T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys. J. 585, 1073–1086 (2003a). doi:10.1086/345501

    ADS  Google Scholar 

  • T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, Coronal mass ejection: initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231–1250 (2003b). doi:10.1086/377444

    ADS  Google Scholar 

  • S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A model for solar coronal mass ejections. Astrophys. J. 510, 485–493 (1999). doi:10.1086/306563

    ADS  Google Scholar 

  • G. Attrill, M.S. Nakwacki, L.K. Harra, L. van Driel-Gesztelyi, C.H. Mandrini, S. Dasso, J. Wang, Using the evolution of coronal dimming regions to probe the global magnetic field topology. Sol. Phys. 238, 117–139 (2006). doi:10.1007/s11207-006-0167-5

    ADS  Google Scholar 

  • H.W. Babcock, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961). doi:10.1086/147060

    ADS  Google Scholar 

  • S. Bao, H. Zhang, Patterns of current helicity for the twenty-second solar cycle. Astrophys. J. Lett. 496, 43 (1998). doi:10.1086/311232

    ADS  Google Scholar 

  • S.D. Bao, A.A. Pevtsov, T.J. Wang, H.Q. Zhang, Helicity computation using observations from two different polarimetric instruments. Sol. Phys. 195, 75–87 (2000). doi:10.1023/A:1005244700895

    ADS  Google Scholar 

  • I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075–1091 (2004). doi:10.1051/0004-6361:20048024

    ADS  Google Scholar 

  • M.A. Berger, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30(1–2), 79–104 (1984). doi:10.1080/03091928408210078

    ADS  Google Scholar 

  • M.A. Berger, Structure and stability of constant-alpha force-free fields. Astrophys. J. Suppl. Ser. 59, 433–444 (1985). doi:10.1086/191079

    ADS  Google Scholar 

  • M.A. Berger, Magnetic helicity in space physics, in Magnetic Helicity in Space and Laboratory Plasmas. Geophysical Monograph Series, vol. 111 (American Geophysical Union, Washington DC, 1999), pp. 1–11.

    Google Scholar 

  • M.A. Berger, G.B. Field, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148 (1984)

    ADS  MathSciNet  Google Scholar 

  • M.A. Berger, C. Prior, The writhe of open and closed curves. J. Phys. A, Math. Gen. 39, 8321–8348 (2006). doi:10.1088/0305-4470/39/26/005

    ADS  MATH  MathSciNet  Google Scholar 

  • M.A. Berger, A. Ruzmaikin, Rate of helicity production by solar rotation. J. Geophys. Res. 105, 10481–10490 (2000). doi:10.1029/1999JA900392

    ADS  Google Scholar 

  • P.N. Bernasconi, D.M. Rust, D. Hakim, Advanced automated solar filament detection and characterization code: description, performance, and results. Solar Phys. 228, 97–117 (2005). doi:10.1007/s11207-005-2766-y

    ADS  Google Scholar 

  • A. Brandenburg, C. Sandin, Catastrophic alpha quenching alleviated by helicity flux and shear. Astron. Astrophys. 427, 13–21 (2004). doi:10.1051/0004-6361:20047086

    ADS  Google Scholar 

  • M.T. Brown, R.C. Canfield, A.A. Pevtsov (eds.), Magnetic Helicity in Space and Laboratory Plasmas. Geophysical Monograph Series (AGU, Washington, D.C., 1999)

    Google Scholar 

  • W. Brunner, Gesetzmäßigkeiten in der Anordnung der Sonnenflecken zu Gruppen. Astron. Mitt. Eidgenöss. Sternwarte Zür. 13, 67–78 (1930)

    ADS  MathSciNet  Google Scholar 

  • J. Büchner, A.A. Pevtsov (eds.), Magnetic Helicity at the Sun, in Solar Wind and Magnetospheres. Advances in Space Research, vol. 32 (Elsevier, Amsterdam, 2003)

    Google Scholar 

  • A.B. Burnette, R.C. Canfield, A.A. Pevtsov, Photospheric and coronal currents in solar active regions. Astrophys. J. 606, 565–570 (2004). doi:10.1086/382775

    ADS  Google Scholar 

  • P.S. Cally, M. Dikpati, P.A. Gilman, Clamshell and tipping instabilities in a two-dimensional magnetohydrodynamic tachocline. Astrophys. J. 582, 1190–1205 (2003). doi:10.1086/344746

    ADS  Google Scholar 

  • G. Călugăreanu, On isotopy classes of three dimensional knots and their invariants. Czechoslov. Math. J. 11, 588–625 (1961)

    Google Scholar 

  • R.H. Cameron, M. Schüssler, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, 57 (2012). doi:10.1051/0004-6361/201219914

    Google Scholar 

  • R.H. Cameron, J. Jiang, D. Schmitt, M. Schüssler, Surface flux transport modeling for solar cycles 15–21: effects of cycle-dependent tilt angles of suns pot groups. Astrophys. J. 719, 264–270 (2010). doi:10.1088/0004-637X/719/1/264

    ADS  Google Scholar 

  • R.C. Canfield, A.A. Pevtsov, Helicity of solar active-region magnetic fields, in Synoptic Solar Physics, ed. by K.S. Balasubramaniam, J. Harvey, D. Rabin. Astronomical Society of the Pacific Conference Series, vol. 140 (1998), p. 131

    Google Scholar 

  • J. Chae, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, 95–98 (2001). doi:10.1086/324173

    ADS  Google Scholar 

  • J. Chae, Y.-J. Moon, Y.-D. Park, Determination of magnetic helicity content of solar active regions from SOHO/MDI magnetograms. Sol. Phys. 223, 39–55 (2004). doi:10.1007/s11207-004-0938-9

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2 (2005)

    ADS  Google Scholar 

  • P. Chatterjee, A.R. Choudhuri, K. Petrovay, Development of twist in an emerging magnetic flux tube by poloidal field accretion. Astron. Astrophys. 449, 781–789 (2006). doi:10.1051/0004-6361:20054401

    ADS  Google Scholar 

  • A.R. Choudhuri, On the connection between mean field dynamo theory and flux tubes. Sol. Phys. 215, 31–55 (2003). doi:10.1023/A:1024874816178

    ADS  Google Scholar 

  • A.R. Choudhuri, P. Chatterjee, D. Nandy, Helicity of solar active regions from a dynamo model. Astrophys. J. Lett. 615, 57–60 (2004). doi:10.1086/426054

    ADS  Google Scholar 

  • K. Dalmasse, E. Pariat, G. Valori, P. Démoulin, L.M. Green, First observational application of a connectivity-based helicity flux density. Astron. Astrophys. 555, 6 (2013). doi:10.1051/0004-6361/201321999

    ADS  Google Scholar 

  • K. Dalmasse, E. Pariat, P. Démoulin, G. Aulanier, Photospheric injection of magnetic helicity: connectivity-based flux density method. Sol. Phys. 289, 107–136 (2014). doi:10.1007/s11207-013-0326-4

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, 7 (2010). doi:10.1051/0004-6361/201014301

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle (corrigendum). Astron. Astrophys. 556, 3 (2013). doi:10.1051/0004-6361/201014301e

    ADS  Google Scholar 

  • P. Démoulin, A review of the quantitative links between CMEs and magnetic clouds. Ann. Geophys. 26, 3113–3125 (2008). doi:10.5194/angeo-26-3113-2008

    ADS  Google Scholar 

  • P. Démoulin, M.A. Berger, Magnetic energy and helicity fluxes at the photospheric level. Sol. Phys. 215, 203–215 (2003). doi:10.1023/A:1025679813955

    ADS  Google Scholar 

  • P. Démoulin, C.H. Mandrini, L. Van Driel-Gesztelyi, M.C. Lopez Fuentes, G. Aulanier, The magnetic helicity injected by shearing motions. Sol. Phys. 207, 87–110 (2002a). doi:10.1023/A:1015531804337

    ADS  Google Scholar 

  • P. Démoulin, C.H. Mandrini, L. van Driel-Gesztelyi, B.J. Thompson, S. Plunkett, Z. Kovári, G. Aulanier, A. Young, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650–665 (2002b). doi:10.1051/0004-6361:20011634

    ADS  Google Scholar 

  • C.R. DeVore, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944–953 (2000). doi:10.1086/309274

    ADS  Google Scholar 

  • S. D’Silva, A.R. Choudhuri, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621 (1993)

    ADS  Google Scholar 

  • Y. Fan, D. Gong, On the twist of emerging flux loops in the solar convection zone. Sol. Phys. 192, 141–157 (2000). doi:10.1023/A:1005260207672

    ADS  Google Scholar 

  • Y. Fan, G.H. Fisher, A.N. McClymont, Dynamics of emerging active region flux loops. Astrophys. J. 436, 907–928 (1994). doi:10.1086/174967

    ADS  Google Scholar 

  • J.M. Finn, T.M. Antonsen Jr., Turbulent relaxation of compressible plasmas with flow. Phys. Fluids 26, 3540–3552 (1983). doi:10.1063/1.864115

    ADS  MATH  Google Scholar 

  • G.H. Fisher, Y. Fan, R.F. Howard, Comparisons between theory and observation of active region tilts. Astrophys. J. 438, 463–471 (1995). doi:10.1086/175090

    ADS  Google Scholar 

  • C. Foullon, C.J. Owen, S. Dasso, L.M. Green, I. Dandouras, H.A. Elliott, A.N. Fazakerley, Y.V. Bogdanova, N.U. Crooker, Multi-spacecraft study of the 21 January 2005 ICME. Sol. Phys. 244(1–2), 139–165 (2007). doi:10.1007/s11207-007-0355-y

    ADS  Google Scholar 

  • M.K. Georgoulis, B.J. LaBonte, Reconstruction of an inductive velocity field vector from Doppler motions and a pair of solar vector magnetograms. Astrophys. J. 636, 475–495 (2006). doi:10.1086/497978

    ADS  Google Scholar 

  • M.K. Georgoulis, B.J. LaBonte, Magnetic energy and helicity budgets in the active region solar corona. I. Linear force-free approximation. Astrophys. J. 671, 1034–1050 (2007). doi:10.1086/521417

    ADS  Google Scholar 

  • M.K. Georgoulis, D.M. Rust, A.A. Pevtsov, P.N. Bernasconi, K.M. Kuzanyan, Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23. Astrophys. J. Lett. 705, 48–52 (2009). doi:10.1088/0004-637X/705/1/L48

    ADS  Google Scholar 

  • M.K. Georgoulis, K. Tziotziou, N.-E. Raouafi, Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys. J. 759, 1 (2012). doi:10.1088/0004-637X/759/1/1

    ADS  Google Scholar 

  • P.A. Gilman, M. Dikpati, Joint instability of latitudinal differential rotation and concentrated toroidal fields below the solar convection zone. II. Instability of narrow bands at all latitudes. Astrophys. J. 528, 552–572 (2000). doi:10.1086/308146

    ADS  Google Scholar 

  • P.A. Gilman, P.A. Fox, Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. Astrophys. J. 484, 439 (1997). doi:10.1086/304330

    ADS  Google Scholar 

  • S. Gosain, A.A. Pevtsov, G.V. Rudenko, S.A. Anfinogentov, First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: non-radial magnetic fields and hemispheric pattern of helicity. Astrophys. J. 772, 52 (2013). doi:10.1088/0004-637X/772/1/52

    ADS  Google Scholar 

  • L.M. Green, M.C. López fuentes, C.H. Mandrini, P. Démoulin, L. Van Driel-Gesztelyi, J.L. Culhane, The magnetic helicity budget of a CME-prolific active region. Sol. Phys. 208, 43–68 (2002). doi:10.1023/A:1019658520033

    ADS  Google Scholar 

  • L.M. Green, B. Kliem, T. Török, L. van Driel-Gesztelyi, G.D.R. Attrill, Transient coronal sigmoids and rotating erupting flux ropes. Sol. Phys. 246, 365–391 (2007). doi:10.1007/s11207-007-9061-z

    ADS  Google Scholar 

  • A.M. Gulisano, S. Dasso, C.H. Mandrini, P. Démoulin, Magnetic clouds: a statistical study of magnetic helicity. J. Atmos. Sol.-Terr. Phys. 67, 1761–1766 (2005). doi:10.1016/j.jastp.2005.02.026

    ADS  Google Scholar 

  • M. Hagino, T. Sakurai, Latitude variation of helicity in solar active regions. Publ. Astron. Soc. Jpn. 56, 831–843 (2004). doi:10.1093/pasj/56.5.831

    ADS  Google Scholar 

  • M. Hagino, T. Sakurai, Solar-cycle variation of magnetic helicity in active regions. Publ. Astron. Soc. Jpn. 57, 481–485 (2005). doi:10.1093/pasj/57.3.481

    ADS  Google Scholar 

  • M.J. Hagyard, A.A. Pevtsov, Studies of solar helicity using vector magnetograms. Sol. Phys. 189, 25–43 (1999). doi:10.1023/A:1005215001514

    ADS  Google Scholar 

  • G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153 (1919). doi:10.1086/142452

    ADS  Google Scholar 

  • J. Hao, M. Zhang, Hemispheric helicity trend for solar cycle 24. Astrophys. J. Lett. 733, 27 (2011). doi:10.1088/2041-8205/733/2/L27

    ADS  Google Scholar 

  • Z.A. Holder, R.C. Canfield, R.A. McMullen, D. Nandy, R.F. Howard, A.A. Pevtsov, On the tilt and twist of solar active regions. Astrophys. J. 611, 1149–1155 (2004). doi:10.1086/422247

    ADS  Google Scholar 

  • R.F. Howard, Axial tilt angles of sunspot groups. Sol. Phys. 136, 251–262 (1991). doi:10.1007/BF00146534

    ADS  Google Scholar 

  • R.F. Howard, Axial tilt angles of active regions. Sol. Phys. 169, 293–301 (1996). doi:10.1007/BF00190606

    ADS  Google Scholar 

  • V.G. Ivanov, Joy’s law and its features according to the data of three sunspot catalogs. Geomagn. Aeron. 52, 999–1004 (2012). doi:10.1134/S0016793212080130

    ADS  Google Scholar 

  • C. Jacobs, S. Poedts, B. van der Holst, The effect of the solar wind on CME triggering by magnetic foot point shearing. Astron. Astrophys. 450, 793–803 (2006). doi:10.1051/0004-6361:20054670

    ADS  Google Scholar 

  • B. Kliem, S. Rust, N. Seehafer, Helicity transport in a simulated coronal mass ejection, in IAU Symposium, ed. by A. Bonanno, E. de Gouveia Dal Pino, A.G. Kosovichev IAU Symposium, vol. 274 (2011), pp. 125–128. doi:10.1017/S1743921311006715

    Google Scholar 

  • B. Kliem, T. Török, W.T. Thompson, A parametric study of erupting flux rope rotation. Modeling the “Cartwheel CME” on 9 April 2008. Sol. Phys. 281, 137–166 (2012). doi:10.1007/s11207-012-9990-z

    ADS  Google Scholar 

  • A.G. Kosovichev, J.O. Stenflo, Tilt of emerging bipolar magnetic regions on the sun. Astrophys. J. Lett. 688, 115–118 (2008). doi:10.1086/595619

    ADS  Google Scholar 

  • K. Kusano, T. Maeshiro, T. Yokoyama, T. Sakurai, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501–512 (2002). doi:10.1086/342171

    ADS  Google Scholar 

  • K. Kusano, T. Yokoyama, T. Maeshiro, T. Sakurai, Annihilation of magnetic helicity: a new model for solar flare onset. Adv. Space Res. 32, 1931–1936 (2003). doi:10.1016/S0273-1177(03)90628-4

    ADS  Google Scholar 

  • K. Kusano, T. Maeshiro, T. Yokoyama, T. Sakurai, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophys. J. 610, 537–549 (2004). doi:10.1086/421547

    ADS  Google Scholar 

  • B.J. LaBonte, M.K. Georgoulis, D.M. Rust, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955–963 (2007). doi:10.1086/522682

    ADS  Google Scholar 

  • R.J. Leamon, R.C. Canfield, A.A. Pevtsov, Properties of magnetic clouds and geomagnetic storms associated with eruption of coronal sigmoids. J. Geophys. Res. 107, 1234 (2002). doi:10.1029/2001JA000313

    Google Scholar 

  • R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969). doi:10.1086/149943

    ADS  Google Scholar 

  • J. Li, R.K. Ulrich, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758, 115 (2012). doi:10.1088/0004-637X/758/2/115

    ADS  Google Scholar 

  • E.-K. Lim, J. Chae, Chirality of intermediate filaments and magnetic helicity of active regions. Astrophys. J. 692, 104–108 (2009). doi:10.1088/0004-637X/692/1/104

    ADS  Google Scholar 

  • E.-K. Lim, H. Jeong, J. Chae, Y.-J. Moon, A check for consistency between different magnetic helicity measurements based on the helicity conservation principle. Astrophys. J. 656, 1167–1172 (2007). doi:10.1086/510575

    ADS  Google Scholar 

  • Y. Liu, P.W. Schuck, Magnetic energy and helicity in two emerging active regions in the sun. Astrophys. J. 761, 105 (2012). doi:10.1088/0004-637X/761/2/105

    ADS  Google Scholar 

  • Y. Liu, P.W. Schuck, A note on computation of relative magnetic-helicity flux across the photosphere. Sol. Phys. 283, 283–294 (2013). doi:10.1007/s11207-012-0219-y

    ADS  Google Scholar 

  • Y. Liu, J.T. Hoeksema, X. Sun, Test of the hemispheric rule of magnetic helicity in the sun using the helioseismic and magnetic imager (HMI) data. Astrophys. J. Lett. 783, 1 (2014). doi:10.1088/2041-8205/783/1/L1

    ADS  Google Scholar 

  • D.W. Longcope, Inferring a photospheric velocity field from a sequence of vector magnetograms: the minimum energy fit. Astrophys. J. 612, 1181–1192 (2004). doi:10.1086/422579

    ADS  Google Scholar 

  • D.W. Longcope, G.H. Fisher, The effects of convection zone turbulence on the tilt angles of magnetic bipoles. Astrophys. J. 458, 380 (1996). doi:10.1086/176821

    ADS  Google Scholar 

  • D.W. Longcope, A. Malanushenko, Defining and calculating self-helicity in coronal magnetic fields. Astrophys. J. 674(2), 1130 (2008). http://stacks.iop.org/0004-637X/674/i=2/a=1130

    ADS  Google Scholar 

  • D.W. Longcope, B.T. Welsch, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089–1100 (2000). doi:10.1086/317846

    ADS  Google Scholar 

  • D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. Astrophys. J. 507, 417–432 (1998). doi:10.1086/306312

    ADS  Google Scholar 

  • D.W. Longcope, M.G. Linton, A.A. Pevtsov, G.H. Fisher, I. Klapper, Twisted flux tubes and how they get that way, in Magnetic Helicity in Space and Laboratory Plasmas, ed. by M.R. Brown, R.C. Canfield, A.A. Pevtsov Geophysical Monographs Series, vol. 111 (AGU, Washington, D.C., 1999), pp. 93–101

    Google Scholar 

  • M.C. López Fuentes, P. Démoulin, C.H. Mandrini, L. van Driel-Gesztelyi, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540–549 (2000). doi:10.1086/317180

    ADS  Google Scholar 

  • M.C. López Fuentes, P. Démoulin, C.H. Mandrini, A.A. Pevtsov, L. van Driel-Gesztelyi, Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Astrophys. 397, 305–318 (2003). doi:10.1051/0004-6361:20021487

    ADS  Google Scholar 

  • B.C. Low, Solar activity and the corona. Sol. Phys. 167, 217–265 (1996). doi:10.1007/BF00146338

    ADS  Google Scholar 

  • B.C. Low, Magnetic helicity in a two-flux partitioning of an ideal hydromagnetic fluid. Astrophys. J. 646(2), 1288 (2006). http://stacks.iop.org/0004-637X/646/i=2/a=1288

    ADS  Google Scholar 

  • B.C. Low, M. Zhang, The hydromagnetic origin of the two dynamical types of solar coronal mass ejections. Astrophys. J. Lett. 564, 53–56 (2002). doi:10.1086/338798

    ADS  Google Scholar 

  • M.L. Luoni, P. Démoulin, C.H. Mandrini, L. van Driel-Gesztelyi, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Sol. Phys. 270, 45–74 (2011). doi:10.1007/s11207-011-9731-8

    ADS  Google Scholar 

  • P. MacNeice, S.K. Antiochos, A. Phillips, D.S. Spicer, C.R. DeVore, K. Olson, A numerical study of the breakout model for coronal mass ejection initiation. Astrophys. J. 614, 1028–1041 (2004). doi:10.1086/423887

    ADS  Google Scholar 

  • C.H. Mandrini, S. Pohjolainen, S. Dasso, L.M. Green, P. Démoulin, L. van Driel-Gesztelyi, C. Copperwheat, C. Foley, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725–740 (2005). doi:10.1051/0004-6361:20041079

    ADS  Google Scholar 

  • S.F. Martin, Observational criteria for filament models, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, G.W. Simon. Astronomical Society of the Pacific Conference Series, vol. 68 (1994), p. 264

    Google Scholar 

  • S.F. Martin, Conditions for the formation and maintenance of filaments (invited review). Sol. Phys. 182, 107–137 (1998). doi:10.1023/A:1005026814076

    ADS  Google Scholar 

  • S.F. Martin, R. Bilimoria, P.W. Tracadas, Magnetic field configurations basic to filament channels and filaments, in Solar Surface Magnetism, ed. by R.J. Rutten, C.J. Schrijver (Kluwer, Dordrecht, 1994), p. 303

    Google Scholar 

  • S.F. Martin, O. Panasenco, M.A. Berger, O. Engvold, Y. Lin, A.A. Pevtsov, N. Srivastava, The build-up to eruptive solar events viewed as the development of chiral systems, in Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, ed. by T.R. Rimmele, A. Tritschler, F. Wöger, M. Collados Vera, H. Socas-Navarro, R. Schlichenmaier, M. Carlsson, T. Berger, A. Cadavid, P.R. Gilbert, P.R. Goode, M. Knölker. Astronomical Society of the Pacific Conference Series, vol. 463 (2012), p. 157

    Google Scholar 

  • B.H. McClintock, A.A. Norton, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol. Phys. 287, 215–227 (2013). doi:10.1007/s11207-013-0338-0

    ADS  Google Scholar 

  • H.K. Moffatt, The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117 (1969)

    ADS  MATH  Google Scholar 

  • H.K. Moffatt, R.L. Ricca, Helicity and the Calugareanu invariant. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 439, 411–429 (1992). doi:10.1098/rspa.1992.0159

    ADS  MATH  MathSciNet  Google Scholar 

  • Y.-J. Moon, J. Chae, G.S. Choe, H. Wang, Y.D. Park, H.S. Yun, V. Yurchyshyn, P.R. Goode, Flare activity and magnetic helicity injection by photospheric horizontal motions. Astrophys. J. 574, 1066–1073 (2002a). doi:10.1086/340975

    ADS  Google Scholar 

  • Y.-J. Moon, J. Chae, H. Wang, G.S. Choe, Y.D. Park, Impulsive variations of the magnetic helicity change rate associated with eruptive flares. Astrophys. J. 580, 528–537 (2002b). doi:10.1086/343130

    ADS  Google Scholar 

  • R.L. Moore, A.C. Sterling, H.S. Hudson, J.R. Lemen, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833–848 (2001). doi:10.1086/320559

    ADS  Google Scholar 

  • D. Nandy, Magnetic helicity and flux tube dynamics in the solar convection zone: comparisons between observation and theory. J. Geophys. Res. 111(A10), 12 (2006). doi:10.1029/2006JA011882

    Google Scholar 

  • A. Nindos, M.D. Andrews, The association of big flares and coronal mass ejections: what is the role of magnetic helicity? Astrophys. J. Lett. 616, 175–178 (2004). doi:10.1086/426861

    ADS  Google Scholar 

  • A. Nindos, H. Zhang, Photospheric motions and coronal mass ejection productivity. Astrophys. J. Lett. 573, 133–136 (2002). doi:10.1086/341937

    ADS  Google Scholar 

  • A. Nindos, J. Zhang, H. Zhang, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033–1048 (2003). doi:10.1086/377126

    ADS  Google Scholar 

  • A. Nindos, S. Patsourakos, T. Wiegelmann, On the role of the background overlying magnetic field in solar eruptions. Astrophys. J. Lett. 748, 6 (2012). doi:10.1088/2041-8205/748/1/L6

    ADS  Google Scholar 

  • A.A. Norton, P.A. Gilman, Recovering solar toroidal field dynamics from sunspot location patterns. Astrophys. J. 630, 1194–1205 (2005). doi:10.1086/431961

    ADS  Google Scholar 

  • L.J. November, G.W. Simon, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427–442 (1988). doi:10.1086/166758

    ADS  Google Scholar 

  • S. Ortolani, D.D. Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific, Singapore, 1993)

    Google Scholar 

  • E. Pariat, P. Démoulin, M.A. Berger, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191–1203 (2005). doi:10.1051/0004-6361:20052663

    ADS  Google Scholar 

  • E. Pariat, A. Nindos, P. Démoulin, M.A. Berger, What is the spatial distribution of magnetic helicity injected in a solar active region? Astron. Astrophys. 452, 623–630 (2006). doi:10.1051/0004-6361:20054643

    ADS  Google Scholar 

  • E. Pariat, P. Démoulin, A. Nindos, How to improve the maps of magnetic helicity injection in active regions? Adv. Space Res. 39, 1706–1714 (2007). doi:10.1016/j.asr.2007.02.047

    ADS  Google Scholar 

  • G.J.D. Petrie, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Sol. Phys. 281, 577–598 (2012). doi:10.1007/s11207-012-0117-3

    ADS  Google Scholar 

  • K. Petrovay, U.R. Christensen, The magnetic sun: reversals and long-term variations. Space Sci. Rev. 155, 371–385 (2010). doi:10.1007/s11214-010-9657-8

    ADS  Google Scholar 

  • A.A. Pevtsov, Transequatorial loops in the solar corona. Astrophys. J. 531, 553–560 (2000). doi:10.1086/308467

    ADS  Google Scholar 

  • A.A. Pevtsov, Sinuous coronal loops at the sun, in Multi-Wavelength Observations of Coronal Structure and Dynamics, ed. by P.C.H. Martens, D.P. Cauffman. COSPAR Colloquia Series, vol. 13 (Pergamon, Dordrecht, 2002), pp. 125–134

    Google Scholar 

  • A.A. Pevtsov, Helicity generation and signature in the solar atmosphere, in IAU Joint Discussion. IAU Joint Discussion, vol. 3 (2003)

    Google Scholar 

  • A.A. Pevtsov, What helicity can tell us about solar magnetic fields. J. Astrophys. Astron. 29, 49–56 (2008). doi:10.1007/s12036-008-0006-1

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, Helicity of the photospheric magnetic field, in Magnetic Helicity in Space and Laboratory Plasmas, ed. by M.R. Brown, R.C. Canfield, A.A. Pevtsov. Geophysical Monographs Series, vol. 111 (AGU, Washington, D.C., 1999), pp. 103–110

    Google Scholar 

  • A.A. Pevtsov, S.M. Latushko, Current helicity of the large-scale photospheric magnetic field. Astrophys. J. 528, 999–1003 (2000). doi:10.1086/308227

    ADS  Google Scholar 

  • A.A. Pevtsov, D.W. Longcope, NOAA 7926: a kinked omega-loop? Astrophys. J. 508, 908–915 (1998). doi:10.1086/306414

    ADS  Google Scholar 

  • A.A. Pevtsov, D.W. Longcope, Origin of helicity in the quiet sun, in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, ed. by M. Sigwarth. Astronomical Society of the Pacific Conference Series, vol. 236 (2001), p. 423

    Google Scholar 

  • A.A. Pevtsov, D.W. Longcope, Helicity as the ultimate test to the surface dynamo problem, in New Solar Physics with Solar-B Mission, ed. by K. Shibata, S. Nagata, T. Sakurai. Astronomical Society of the Pacific Conference Series, vol. 369 (2007), p. 99

    Google Scholar 

  • A.A. Pevtsov, N.L. Peregud, Electric currents in a unipolar sunspot, in Physics of Magnetic Flux Ropes. Geophysical Monograph Series, vol. 58 (American Geophysical Union, Washington DC, 1990), pp. 161–165

    Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, T.R. Metcalf, Patterns of helicity in solar active regions. Astrophys. J. 425, 117–119 (1994). doi:10.1086/187324

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, T.R. Metcalf, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, 109–112 (1995). doi:10.1086/187773

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, A.N. McClymont, On the subphotospheric origin of coronal electric currents. Astrophys. J. 481, 973 (1997). doi:10.1086/304065

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, S.M. Latushko, Hemispheric helicity trend for solar cycle 23. Astrophys. J. Lett. 549, 261–263 (2001). doi:10.1086/319179

    ADS  Google Scholar 

  • A.A. Pevtsov, K.S. Balasubramaniam, J.W. Rogers, Chirality of chromospheric filaments. Astrophys. J. 595, 500–505 (2003). doi:10.1086/377339

    ADS  Google Scholar 

  • A.A. Pevtsov, V.M. Maleev, D.W. Longcope, Helicity evolution in emerging active regions. Astrophys. J. 593, 1217–1225 (2003a). doi:10.1086/376733

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, T. Sakurai, M. Hagino, On the solar cycle variation of the hemispheric helicity rule. Astrophys. J. 677, 719–722 (2008). doi:10.1086/533435

    ADS  Google Scholar 

  • A.A. Pevtsov, M. Berger, A. Nindos, A. Norton, L. van Driel-Gesztelyi, Magnetic helicity, tilt, and twist, in The Solar Activity Cycle: Physical Causes and Consequences, ed. by A. Balogh, H. Hudson, K. Petrovay, R. von Steiger. Space Science Series of ISSI, vol. 53 (Springer, Heidelberg, 2014)

    Google Scholar 

  • A.D. Phillips, P.J. MacNeice, S.K. Antiochos, The role of magnetic helicity in coronal mass ejections. Astrophys. J. Lett. 624, 129–132 (2005). doi:10.1086/430516

    ADS  Google Scholar 

  • K.G. Puschmann, B. Ruiz Cobo, V. Martínez Pillet, The electrical current density vector in the inner penumbra of a sunspot. Astrophys. J. Lett. 721, 58–61 (2010). doi:10.1088/2041-8205/721/1/L58

    ADS  Google Scholar 

  • B. Ravindra, D.W. Longcope, W.P. Abbett, Inferring photospheric velocity fields using a combination of minimum energy fit, local correlation tracking, and Doppler velocity. Astrophys. J. 677, 751–768 (2008). doi:10.1086/528363

    ADS  Google Scholar 

  • R.L. Ricca, B. Nipoti, Gauss linking number revisited. J. Knot Theory Ramif. 20, 1325–1343 (2011)

    MATH  MathSciNet  Google Scholar 

  • P. Romano, F. Zuccarello, Flare occurrence and the spatial distribution of the magnetic helicity flux. Astron. Astrophys. 535, 1–5 (2011). doi:10.1051/0004-6361/201117594

    ADS  Google Scholar 

  • P. Romano, L. Contarino, F. Zuccarello, Eruption of a helically twisted prominence. Sol. Phys. 214, 313–323 (2003). doi:10.1023/A:1024257603143

    ADS  Google Scholar 

  • G.V. Rudenko, I.I. Myshyakov, Gauge-invariant helicity for force-free magnetic fields in a rectangular box. Sol. Phys. 270, 165–173 (2011). doi:10.1007/s11207-011-9743-4

    ADS  Google Scholar 

  • B. Ruiz Cobo, K.G. Puschmann, Twist, writhe, and helicity in the inner penumbra of a sunspot. Astrophys. J. 745, 141 (2012). doi:10.1088/0004-637X/745/2/141

    ADS  Google Scholar 

  • D.M. Rust, Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241–244 (1994). doi:10.1029/94GL00003

    ADS  Google Scholar 

  • D.M. Rust, A. Kumar, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, 199 (1996). doi:10.1086/310118

    ADS  Google Scholar 

  • D.M. Rust, S.F. Martin, A correlation between sunspot whirls and filament type, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, G.W. Simon. Astronomical Society of the Pacific Conference Series, vol. 68 (1994), p. 337

    Google Scholar 

  • H.U. Schmidt, Magnetohydrodynamics of an active region, in Structure and Development of Solar Active Regions, ed. by K.O. Kiepenheuer. IAU Symposium, vol. 35 (1968), p. 95

    Google Scholar 

  • P.W. Schuck, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134–1152 (2008). doi:10.1086/589434

    ADS  Google Scholar 

  • M. Schüssler, P. Caligari, A. Ferriz-Mas, F. Moreno-Insertis, Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Astrophys. 281, 69–72 (1994)

    ADS  Google Scholar 

  • N. Seehafer, Electric current helicity in the solar atmosphere. Sol. Phys. 125, 219–232 (1990). doi:10.1007/BF00158402

    ADS  Google Scholar 

  • K.R. Sivaraman, S.S. Gupta, R.F. Howard, Measurement of Kodaikanal white-light images—IV. Axial tilt angles of sunspot groups. Sol. Phys. 189, 69–83 (1999). doi:10.1023/A:1005277515551

    ADS  Google Scholar 

  • J.O. Stenflo, A.G. Kosovichev, Bipolar magnetic regions on the sun: global analysis of the SOHO/MDI data set. Astrophys. J. 745, 129 (2012). doi:10.1088/0004-637X/745/2/129

    ADS  Google Scholar 

  • J.K. Thalmann, B. Inhester, T. Wiegelmann, Estimating the relative helicity of coronal magnetic fields. Sol. Phys. 272, 243–255 (2011). doi:10.1007/s11207-011-9826-2

    ADS  Google Scholar 

  • J.K. Thalmann, S.K. Tiwari, T. Wiegelmann, Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona. Astrophys. J. 780(1), 102 (2014). doi:10.1088/0004-637X/780/1/102

    ADS  Google Scholar 

  • L. Tian, Y. Liu, Tilt and α best of major flare-producing active regions. Astron. Astrophys. 407, 13–16 (2003). doi:10.1051/0004-6361:20030977

    ADS  Google Scholar 

  • L. Tian, S. Bao, H. Zhang, H. Wang, Relationship in sign between tilt and twist in active region magnetic fields. Astron. Astrophys. 374, 294–300 (2001). doi:10.1051/0004-6361:20010701

    ADS  Google Scholar 

  • A.G. Tlatov, A.A. Pevtsov, Bimodal distribution of magnetic fields and areas of sunspots. Sol. Phys. 289, 1143–1152 (2014). doi:10.1007/s11207-013-0382-9

    ADS  Google Scholar 

  • A.G. Tlatov, V.V. Vasil’eva, A.A. Pevtsov, Distribution of magnetic bipoles on the sun over three solar cycles. Astrophys. J. 717, 357–362 (2010). doi:10.1088/0004-637X/717/1/357

    ADS  Google Scholar 

  • T. Török, B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, 97–100 (2005). doi:10.1086/462412

    ADS  Google Scholar 

  • T. Török, M.A. Berger, B. Kliem, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, 49 (2010). doi:10.1051/0004-6361/200913578

    Google Scholar 

  • T. Török, B. Kliem, M.A. Berger, M.G. Linton, P. Demoulin, L. van Driel-Gesztelyi, The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Phys. Control. Fusion, 56(6), 064012 (2014)

    ADS  Google Scholar 

  • K. Tziotziou, M.K. Georgoulis, N.-E. Raouafi, The magnetic energy-helicity diagram of solar active regions. Astrophys. J. Lett. 759, 4 (2012). doi:10.1088/2041-8205/759/1/L4

    ADS  Google Scholar 

  • K. Tziotziou, M.K. Georgoulis, Y. Liu, Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys. J. 772, 115 (2013). doi:10.1088/0004-637X/772/2/115

    ADS  Google Scholar 

  • L. Upton, D.H. Hathaway, Predicting the sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014). doi:10.1088/0004-637X/780/1/5

    ADS  Google Scholar 

  • G. Valori, P. Démoulin, E. Pariat, Comparing values of the relative magnetic helicity in finite volumes. Sol. Phys. 278, 347–366 (2012). doi:10.1007/s11207-012-0044-3

    ADS  Google Scholar 

  • A.A. van Ballegooijen, P.C.H. Martens, Formation and eruption of solar prominences. Astrophys. J. 343, 971–984 (1989). doi:10.1086/167766

    ADS  Google Scholar 

  • B. Vršnak, V. Ruždjak, B. Rompolt, Stability of prominences exposing helical-like patterns. Sol. Phys. 136, 151–167 (1991). doi:10.1007/BF00151701

    ADS  Google Scholar 

  • Y.-M. Wang, On the strength of the hemispheric rule and the origin of active-region helicity. Astrophys. J. Lett. 775, 46 (2013). doi:10.1088/2041-8205/775/2/L46

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Average properties of bipolar magnetic regions during sunspot cycle 21. Sol. Phys. 124, 81–100 (1989). doi:10.1007/BF00146521

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment—new twists to the Babcock-Leighton model. Astrophys. J. 375, 761–770 (1991). doi:10.1086/170240

    ADS  Google Scholar 

  • C. Wang, M. Zhang, A hemispheric helicity sign rule indicated by large-scale photospheric magnetic fields at three phases of solar cycle 23. Astrophys. J. 720, 632–638 (2010). doi:10.1088/0004-637X/720/1/632

    ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11 (2011). doi:10.1088/0004-637X/741/1/11

    ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: constraining the dynamo field strength. Sol. Phys. 287, 239–263 (2013). doi:10.1007/s11207-012-0093-7

    ADS  Google Scholar 

  • B.T. Welsch, D.W. Longcope, Magnetic helicity injection by horizontal flows in the quiet sun. I. Mutual-helicity flux. Astrophys. J. 588, 620–629 (2003). doi:10.1086/368408

    ADS  Google Scholar 

  • B.T. Welsch, G.H. Fisher, W.P. Abbett, S. Regnier, ILCT: recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys. J. 610, 1148–1156 (2004). doi:10.1086/421767

    ADS  Google Scholar 

  • B.T. Welsch, W.P. Abbett, M.L. De Rosa, G.H. Fisher, M.K. Georgoulis, K. Kusano, D.W. Longcope, B. Ravindra, P.W. Schuck, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434–1452 (2007). doi:10.1086/522422

    ADS  Google Scholar 

  • D.R. Williams, T. Török, P. Démoulin, L. van Driel-Gesztelyi, B. Kliem, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, 163–166 (2005). doi:10.1086/432910

    ADS  Google Scholar 

  • P.R. Wilson, R.C. Altrocki, K.L. Harvey, S.F. Martin, H.B. Snodgrass, The extended solar activity cycle. Nature 333, 748–750 (1988). doi:10.1038/333748a0

    ADS  Google Scholar 

  • A. Wright, M.A. Berger, The effect of reconnection upon the linkage and interior structure of magnetic flux tubes. J. Geophys. Res. 94, 1295–1302 (1989)

    ADS  Google Scholar 

  • S. Yang, H. Zhang, Large-scale magnetic helicity fluxes estimated from MDI magnetic synoptic charts over the solar cycle 23. Astrophys. J. 758, 61 (2012). doi:10.1088/0004-637X/758/1/61

    ADS  Google Scholar 

  • A.R. Yeates, D.H. Mackay, A.A. van Ballegooijen, Modelling the global solar corona: filament chirality observations and surface simulations. Sol. Phys. 245, 87–107 (2007). doi:10.1007/s11207-007-9013-7

    ADS  Google Scholar 

  • M. Zhang, Helicity observations of weak and strong fields. Astrophys. J. Lett. 646, 85–88 (2006). doi:10.1086/506560

    ADS  Google Scholar 

  • M. Zhang, N. Flyer, The dependence of the helicity bound of force-free magnetic fields on boundary conditions. Astrophys. J. 683, 1160–1167 (2008). doi:10.1086/589993

    ADS  Google Scholar 

  • M. Zhang, B.C. Low, Magnetic flux emergence into the solar corona. I. Its role for the reversal of global coronal magnetic fields. Astrophys. J. 561, 406–419 (2001). doi:10.1086/323238

    ADS  Google Scholar 

  • M. Zhang, B.C. Low, Magnetic flux emergence into the solar corona. III. The role of magnetic helicity conservation. Astrophys. J. 584, 479–496 (2003). doi:10.1086/345615

    ADS  Google Scholar 

  • M. Zhang, B.C. Low, The hydromagnetic nature of solar coronal mass ejections. Annu. Rev. Astron. Astrophys. 43, 103–137 (2005). doi:10.1146/annurev.astro.43.072103.150602

    ADS  Google Scholar 

  • M. Zhang, N. Flyer, B.C. Low, Magnetic field confinement in the corona: the role of magnetic helicity accumulation. Astrophys. J. 644, 575–586 (2006). doi:10.1086/503353

    ADS  Google Scholar 

  • H. Zhang, T. Sakurai, A. Pevtsov, Y. Gao, H. Xu, D.D. Sokoloff, K. Kuzanyan, A new dynamo pattern revealed by solar helical magnetic fields. Mon. Not. R. Astron. Soc. 402, 30–33 (2010). doi:10.1111/j.1745-3933.2009.00793.x

    ADS  Google Scholar 

  • M. Zhang, N. Flyer, B. Chye Low, Magnetic helicity of self-similar axisymmetric force-free fields. Astrophys. J. 755, 78 (2012). doi:10.1088/0004-637X/755/1/78

    ADS  Google Scholar 

  • Y. Zhang, R. Kitai, K. Takizawa, Magnetic helicity transported by flux emergence and shuffling motions in solar active region NOAA 10930. Astrophys. J. 751, 85 (2012). doi:10.1088/0004-637X/751/2/85

    ADS  Google Scholar 

  • F.P. Zuccarello, C. Jacobs, A. Soenen, S. Poedts, B. van der Holst, F. Zuccarello, Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions. Astron. Astrophys. 507, 441–452 (2009). doi:10.1051/0004-6361/200912541

    ADS  Google Scholar 

Download references

Acknowledgements

The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, AURA Inc under cooperative agreement with the National Science Foundation (NSF). AN’s research has been partly co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: “Thales. Investing in knowledge society through the European Social Fund.” LvDG acknowledges support by STFC Consolidated Grant ST/H00260/1 and the Hungarian Research grants OTKA K-081421 and K-109276. AAP acknowledges support by NASA’s NNH09AL04I inter agency transfer. Data used in Fig. 9 were acquired by SOLIS instruments operated by NISP/NSO/AURA/NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Pevtsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevtsov, A.A., Berger, M.A., Nindos, A. et al. Magnetic Helicity, Tilt, and Twist. Space Sci Rev 186, 285–324 (2014). https://doi.org/10.1007/s11214-014-0082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0082-2

Keywords

Navigation