Skip to main content
Log in

The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Mars thermosphere-ionosphere-exosphere (TIE) system constitutes the atmospheric reservoir (i.e. available cold and hot planetary neutral and thermal ion species) that regulates present day escape processes from the planet. The characterization of this TIE system, including its spatial and temporal (e.g., solar cycle, seasonal, diurnal, episodic) variability is needed to determine present day escape rates. Without knowledge of the physics and chemistry creating this TIE region and driving its variations, it is not possible to constrain either the short term or long term histories of atmosphere escape from Mars. MAVEN (Mars Atmosphere and Volatile Evolution Mission) will make both in-situ and remote measurements of the state variables of the Martian TIE system. A full characterization of the thermosphere (∼100–250 km) and ionosphere (∼100–400 km) structure (and its variability) will be conducted with the collection of spacecraft in-situ measurements that systematically span most local times and latitudes, over a regular sampling of Mars seasons, and throughout the bottom half of the solar cycle. Such sampling will far surpass that available from existing spacecraft and ground-based datasets. In addition, remote measurements will provide a systematic mapping of the composition and structure of Mars neutral upper atmosphere and coronae (e.g. H, C, N, O), as well as probe lower altitudes. Such a detailed characterization is a necessary first step toward answering MAVEN’s three main science questions (see Jakosky et al. 2014, this issue). This information will be used to determine present day escape rates from Mars, and provide an estimate of integrated loss to space throughout Mars history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • M. Angelats i Coll, F. Forget, M.A. López-Valverde et al., Upper atmosphere of Mars up to 120 km: Mars Global Surveyor data analysis with the LMD general circulation model. J. Geophys. Res. 109, E01011 (2004). doi:10.1029/2003JE002163

    ADS  Google Scholar 

  • D.T. Baird, R. Tolson, S.W. Bougher, B. Steers, Zonal wind calculation from MGS Accelerometer and rate data. AIAA J. Spacecr. Rockets 44(6), 1180–1187 (2007)

    Article  ADS  Google Scholar 

  • C.A. Barth, A.I.F. Stewart, S.W. Bougher et al., Aeronomy of the current martian atmosphere, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 1054–1089

    Google Scholar 

  • J.-L. Bertaux, E. Chassefiere, V.G. Kurt, Vensu EUV measurements of hydrogen and helium from Venera 11 and Venera 12. Adv. Space Res. 5, 119–124 (1985)

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, F. Leblanc, S. Perrier et al., Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science 307, 566–569 (2005a). doi:10.1126/science.1106957

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, F. Leblanc, O. Witasse et al., Discovery of an aurora on Mars. Nature 435, 790–794 (2005b)

    Article  ADS  Google Scholar 

  • S.W. Bougher, Comparative thermospheres: Venus and Mars. Adv. Space Res. 15(4), 21–25 (1995)

    Article  ADS  Google Scholar 

  • S.W. Bougher, Coupled MGCM-MTGCM Mars thermosphere simulations and resulting data products in support of the MAVEN mission. JPL/CDP report, pp. 1–9, 6 August 2012 (2012)

  • S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 259–291

    Google Scholar 

  • S.W. Bougher, G. Keating, R. Zurek et al., Mars global surveyor aerobraking: Atmospheric trends and model interpretation. Adv. Space Res. 23, 1887–1897 (1999a). doi:10.1016/S0273-1177(99)00272-0

    Article  ADS  Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999b). doi:10.1029/1998JE001019

    Article  ADS  Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105, 17669–17692 (2000). doi:10.1029/1999JE001232

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, T.J. Fuller-Rowell, Simulations of the upper atmospheres of the terrestrial planets, in Atmospheres in the Solar System, Comparative Aeronomy, ed. by M. Mendillo, A.F. Nagy, J.H. Waite Jr. AGU Monograph, vol. 130 (American Geophysical Union, Washington, 2002), pp. 261–288

    Chapter  Google Scholar 

  • S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS Radio Science electron density profiles: Interannual variability and implications for the martian neutral atmosphere. J. Geophys. Res. 109, E03010 (2004). doi:10.1029/2003JE002154

    ADS  Google Scholar 

  • S.W. Bougher, J.M. Bell, J.R. Murphy et al., Polar warming in the Mars thermosphere: Seasonal variations owing to changing isolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006). doi:10.1029/2005GL024059

    Article  ADS  Google Scholar 

  • S.W. Bougher, P.-L. Blelly, M. Combi et al., Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107–141 (2008). doi:10.1007/s11214-008-9401-9

    Article  ADS  Google Scholar 

  • S.W. Bougher, A. Valeille, M.R. Combi, V. Tenishev, Solar cycle and seasonal variability of the martian thermosphere-ionosphere and associated impacts upon atmospheric escape. SAE Technical Paper #2009-01-2386, SAE International (2009a)

  • S.W. Bougher, T.M. McDunn, K.A. Zoldak, J.M. Forbes, Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophys. Res. Lett. 36, L05201 (2009b). doi:10.1029/2008GL036376

    Article  ADS  Google Scholar 

  • S.W. Bougher, A. Ridley, D. Pawlowski et al., Development and validation of the ground-to-exosphere Mars GITM code: solar cycle and seasonal variations of the upper atmosphere, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France (2011a)

    Google Scholar 

  • S.W. Bougher, D.J. Pawlowski, J.R. Murphy, Toward an understanding of the time-dependent responses of the martian upper atmosphere to dust storm events, in 2011 Fall AGU Meeting, San Francisco, California (2011b)

    Google Scholar 

  • S.W. Bougher, D.A. Brain, J.L. Fox, F. Gonzalez-Galindo, C. Simon-Wedlund, P.G. Withers, Upper neutral atmosphere and ionosphere, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 14

    Google Scholar 

  • D.A. Brain, S. Barabash, S.W. Bougher, F. Duru, B.M. Jakosky, R. Modolo, Solar wind interaction and atmospheric escape, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 15

    Google Scholar 

  • P.C. Chamberlain, T.N. Woods, F.G. Eparvier, Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather 6(S05), 001 (2008). doi:10.1029/2007SW000372

    Google Scholar 

  • S. Chapman, The absorption and dissociation of ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931)

    Article  ADS  MATH  Google Scholar 

  • E. Chassefiere, F. Leblanc, Mars atmospheric escape and evolution: Interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004)

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112, E09009 (2007). doi:10.1029/2007JE002915

    ADS  Google Scholar 

  • J.Y. Chaufray, F. Leblanc, E. Quémerais, J.L. Bertaux, Martian oxygen density at the exobase deduced from O I 130.4-nm observations by spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. 114, E02006 (2009)

    ADS  Google Scholar 

  • F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: Nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi:10.1029/2006JE002818

    ADS  Google Scholar 

  • J.E.P. Connerney et al., The Magnetometer (MAG) (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/mag

  • D.H. Crider, D.A. Brain, M.A. Acuña, D. Vignes, C. Mazelle, C. Bertucci, Mars global surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111(1), 203–221 (2004). doi:10.1023/B:SPAC.0000032714.66124.4e

    Article  ADS  Google Scholar 

  • Z. Dobe, A.F. Nagy, J.L. Fox, A theoretical study concerning the solar cycle dependence of the nightside ionosphere of Venus. J. Geophys. Res. 100, 14507–14513 (1995)

    Article  ADS  Google Scholar 

  • C. Dong, S.W. Bougher, Y. Ma, G. Toth, A.F. Nagy, D. Najib, Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 1–8 (2014). doi:10.1002/2014GL059515

    Article  Google Scholar 

  • F. Duru, D.A. Gurnett, D.D. Morgan, R. Modolo, A.F. Nagy, D. Najib, Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. J. Geophys. Res. 113, A07302 (2008). doi:10.1029/2008JA013073

    ADS  Google Scholar 

  • F. Duru, D.A. Gurnett, R.A. Frahm, J.D. Winningham, D.D. Morgan, G.G. Howes, Steep transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114(A), 12310 (2009). doi:10.1029/2009JA014711

    Article  Google Scholar 

  • F. Duru, D.A. Gurnett, J.D. Winningham, R. Frahm, R. Modolo, A plasma flow velocity boundary at Mars from the disappearance of electron plasma oscillations. Icarus 206(1), 74–82 (2010). doi:10.1016/j.icarus.2009.04.012

    Article  ADS  Google Scholar 

  • S.L. England, R.J. Lillis, On the nature of the variability of the Martian thermospheric mass density: Results from the electron reflectometry with Mars Global Surveyor. J. Geophys. Res. 117, E02008 (2012). doi:10.1029/2011JE003998

    ADS  Google Scholar 

  • F.G. Eparvier et al., The extreme ultraviolet (EUV) monitor (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/lpw/extreme-ultraviolet-euv-monitor

  • R.E. Ergun et al., The Langmuir probe and waves (LPW) instrument (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/lpw

  • X. Fang, S.W. Bougher, et al., The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40 (2013). doi:10.1029/grl.50415.2013

  • P.D. Feldman et al., Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214, 394–399 (2011)

    Article  ADS  Google Scholar 

  • M.O. Fillingim, L.M. Peticolas, R.J. Lillis et al., Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophys. Res. Lett. 34, L12101 (2007). doi:10.1029/2007GL029986

    Article  ADS  Google Scholar 

  • G. Fjeldbo, V.R. Eshleman, The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci. 16, 1035–1059 (1968)

    Article  ADS  Google Scholar 

  • J.M. Forbes, M.E. Hagan, Diurnal Kelvin wave in the atmosphere of Mars: Towards an understanding of “stationary” density structures observed by the MGS Accelerometer. Geophys. Res. Lett. 27, 21 (2000). doi:10.1029/2000GL011850

    Article  ADS  Google Scholar 

  • J.M. Forbes, A.F.C. Bridger, S.W. Bougher et al., Nonmigrating tides in the thermosphere of Mars. J. Geophys. Res. 107, 5113 (2002). doi:10.1029/2001JE001582

    Google Scholar 

  • J.M. Forbes, F.G. Lemoine, S.L. Bruinsma et al., Solar flux variability of Mars’ exosphere densities and temperatures. Geophys. Res. Lett. 35, L01201 (2008). doi:10.1029/2007GL031904

    ADS  Google Scholar 

  • F. Forget, F. Montmessin, J.-L. Bertaux et al., Density and temperatures of the upper martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114, E01004 (2009). doi:10.1029/2008JE003086

    ADS  Google Scholar 

  • J.L. Fox, Morphology of the dayside ionosphere of Mars: Implication for ion outflows. J. Geophys. Res. 114, E12005 (2009). doi:10.1029/2009JE003432

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009). doi:10.1016/j.icarus.2009.07.005

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Isotope fractionation in the photochemical escape of O from Mars. Icarus 208, 176–191 (2010). doi:10.1016/j.icarus.2010.01.019

    Article  ADS  Google Scholar 

  • J.L. Fox, A.J. Kliore, Ionosphere: solar cycle variations, in Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997)

    Google Scholar 

  • J.L. Fox, J.F. Brannon, H.S. Porter, Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett. 20, 1339–1342 (1993)

    Article  ADS  Google Scholar 

  • J.L. Fox, P. Zhou, S.W. Bougher, The thermosphere/ionosphere of Mars at high and low solar activities. Adv. Space Res. 17, (11)203–(11)218 (1996)

    Article  ADS  Google Scholar 

  • M. Fränz, E. Dubinin, E. Nielsen et al., Transterminator ion flow in the martian ionosphere. Planet. Space Sci. 58, 1442–1454 (2010)

    Article  ADS  Google Scholar 

  • T. Fuller-Rowell, S.C. Solomon, Flares, coronal mass ejections, and atmospheric responses, in Heliophysics—Space Storms and Radiation: Causes and Effects, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2010), pp. 321–357

    Chapter  Google Scholar 

  • F. González-Galindo, F. Forget, M.A. López-Valverde et al., A ground-to-exosphere martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114, E04001 (2009). doi:10.1029/2008JE003246

    ADS  Google Scholar 

  • G. Gronoff, C. Simon-Wedlund, C.J. Mertens et al., Computing uncertainties in ionosphere-airglow models. II. The martian airglow. J. Geophys. Res. 117, A05309 (2012). doi:10.1029/2011JA017308

    ADS  Google Scholar 

  • D.A. Gurnett, R.L. Huff, D.D. Morgan et al., An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft. Adv. Space Res. 41, 1335–1346 (2008)

    Article  ADS  Google Scholar 

  • S.A. Haider, K.K. Mahajan, E. Kallio, Mars ionosphere: A review of experimental results and modeling studies. Rev. Geophys. 49, RG4001 (2011). doi:10.1029/2011RG000357

    ADS  Google Scholar 

  • W.B. Hanson, G.P. Mantas, Viking electron temperature measurements—Evidence for a magnetic field in the martian ionosphere. J. Geophys. Res. 93, 7538–7544 (1988)

    Article  ADS  Google Scholar 

  • W.B. Hanson, S. Sanatani, D.R. Zuccaro, The martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82, 4351–4363 (1977)

    Article  ADS  Google Scholar 

  • J.S. Halekas et al., The solar wind ion analyzer for MAVEN. Space Sci. Rev. (2013, this issue). doi:10.1007/s11214-013-0029-z

  • D.P. Hinson, R.A. Simpson, J.D. Twicken et al., Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999)

    Article  ADS  Google Scholar 

  • R.R. Hodges, The rate of loss of water from Mars. Geophys. Res. Lett. 29(3), 1038 (2002). doi:10.1029/2001GL013853

    Article  ADS  Google Scholar 

  • D.L. Huestis, T.G. Slanger, B.D. Sharpee, J.L. Fox, Chemical origins of the Mars ultraviolet dayglow. Faraday Discuss. 147, 307–322 (2010)

    Article  ADS  Google Scholar 

  • B.M. Jakosky, MAVEN: A Mars Scout Phase A Concept Study Report. Version 2: No Cost Edited, 1–109 (2008)

  • B.M. Jakosky et al., The MAVEN mission to Mars: exploring Mars’ climate history, in 6th Alfven Conference, Abstract, 7–11 July (UCL, London, 2014)

    Google Scholar 

  • W.T. Kasprzak, G.M. Keating, N.C. Hsu, A.I.F. Stewart, W.B. Colwell, S.W. Bougher, Solar activity behavior of the thermosphere, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 225–257

    Google Scholar 

  • G.M. Keating, S.W. Bougher, R.W. Zurek et al., The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1676 (1998)

    Article  ADS  Google Scholar 

  • G.M. Keating, M. Theriot, R. Tolson et al., Brief review on the results obtained with the MGS and Mars Odyssey 2001 accelerometer experiments, in Mars Atmosphere: Modeling and Observations Workshop, Granada, Spain (2003)

    Google Scholar 

  • G.M. Keating, S.W. Bougher, M.E. Theriot et al., Atmospheric structure from Mars reconnaissance orbiter accelerometer measurements, in Proceedings of European Planetary Science Congress, Berlin, Germany (2006)

    Google Scholar 

  • G.M. Keating, S.W. Bougher, M.E. Theriot, R.H. Tolson, Properties of the Mars upper atmosphere derived from accelerometer measurements, in Proceedings of 37th COSPAR Scientific Assembly 2008 and 50th Anniversary, Montreal, Canada (2008)

    Google Scholar 

  • Y.H. Kim, S. Son, Y. Yi, J. Kim, A non-spherical model for the hot oxygen corona of Mars. J. Korean Astron. Soc. 34, 25–29 (2001)

    ADS  Google Scholar 

  • A.J. Kliore, D.L. Cain, G. Fjeldbo et al., The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus 17, 484–516 (1972)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus 207, 638–647 (2010)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, P.D. Feldman, Far ultraviolet spectrum of Mars. Icarus 160, 86–94 (2002)

    Article  ADS  Google Scholar 

  • M.A. Krestyanikova, V.I. Shematovitch, Stochastic models of hot planetary and satellite coronas: A photochemical source of hot oxygen in the upper atmosphere of Mars. Sol. Syst. Res. 39, 22–32 (2005)

    Article  ADS  Google Scholar 

  • T.P. Larson et al., The solar energetic particle (SEP) instrument (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/sep

  • F. Leblanc, J.Y. Chaufray, J. Lilensten et al., Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111(9) (2006). doi:10.1029/2005JE002664

  • C. Lee et al., Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 114, E03005 (2009). doi:10.1029/2008JE003285

    ADS  Google Scholar 

  • Y. Lee, M. Combi, V. Tenishev, S.W. Bougher, Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at Equinox. J. Geophys. Res. (2014). doi:10.1002/2013JE004552

    Google Scholar 

  • R.J. Lillis, S.W. Bougher, F. González-Galindo et al., Four martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations. J. Geophys. Res. 115, E07014 (2010). doi:10.1029/2009JE003529

    ADS  Google Scholar 

  • R.J. Lillis et al., Photochemical escape of the Martian atmosphere: looking forward to MAVEN, in 6th Alfven Conference, Abstract, 7–11 July (UCL, London, 2014)

    Google Scholar 

  • J. Liu, M.I. Richardson, R.J. Wilson, An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared. J. Geophys. Res. 108(E8), 5089 (2003). doi:10.1029/2002JE001921

    Article  Google Scholar 

  • R. Lundin et al., A comet-like escape of ionospheric plasma from Mars. Geophys. Res. Lett. 35, L18203 (2008). doi:10.1029/2008GL034811

    Article  ADS  Google Scholar 

  • Y. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007). doi:10.1029/2006GL029208

    Article  ADS  Google Scholar 

  • Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). doi:10.1029/2003JA010367

    ADS  Google Scholar 

  • Y.J. Ma, X. Fang, A.F. Nagy, C.T. Russell, G. Toth, Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res. 119, 1272–1286 (2014). doi:10.1002/2013JA019402

    Article  Google Scholar 

  • P.R. Mahaffy et al., Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0043-9

  • M. Matta, P. Withers, M. Mendillo, The composition of Mars’ topside ionosphere: Effects of hydrogen. J. Geophys. Res. 118, 1–13 (2013). doi:10.1002/jgra.50104

    Article  Google Scholar 

  • W. McClintock et al., The imaging ultraviolet spectrograph (IUVS) (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/iuvs

  • T.L. McDunn, S.W. Bougher, J. Murphy et al., Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCM-MTGCM: A comparison with MEX/SPICAM observations. Icarus 206, 5–17 (2010)

    Article  ADS  Google Scholar 

  • J. McFadden et al., The suprathermal and thermal ion composition (STATIC) instrument (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/static

  • M. Mendillo, S. Smith, J. Wroten et al., Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res. 108, 1432 (2003). doi:10.1029/2003JA009961

    Article  Google Scholar 

  • M. Mendillo, P. Withers, D. Hinson et al., Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006)

    Article  ADS  Google Scholar 

  • M. Mendillo, A.G. Marusiak, P. Withers, D. Morgan, D. Gurnett, A new semi-empirical model of the peak electron density of the martian ionosphere. Geophys. Res. Lett. 40, 5361–5365 (2013). doi:10.1002/2013GL057631

    Article  ADS  Google Scholar 

  • D.L. Mitchell, R.P. Lin, H. Rème, D.H. Crider, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Oxygen Auger electrons observed in Mars’ ionosphere. Geophys. Res. Lett. 27(1), 1871–1874 (2000). doi:10.1029/1999GL010754

    Article  ADS  Google Scholar 

  • D.L. Mitchell, R.P. Lin, C. Mazelle et al., Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106, 23419–23428 (2001)

    Article  ADS  Google Scholar 

  • D.G. Mitchell et al., The Solar Wind Electron Analyzer (SWEA) (2014). http://lasp.colorado.edu/home/maven/science/instrument-package/swea

  • D.D. Morgan, D.A. Gurnett, D.L. Kirchner et al., Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. 113, A09303 (2008). doi:10.1029/2008JA013313

    ADS  Google Scholar 

  • Y. Moudden, J.M. Forbes, Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere. Geophys. Res. Lett. 35, L23805 (2008). doi:10.1029/2008GL036086

    Article  ADS  Google Scholar 

  • Y. Moudden, J.M. Forbes, A new interpretation of Mars aerobraking variability: Planetary wave-tide interactions. J. Geophys. Res. 115, E09005 (2010). doi:10.1029/2009JE003542

    ADS  Google Scholar 

  • I.C.F. Müeller-Wodarg, D.F. Strobel, J.I. Moses et al., Neutral atmospheres. Space Sci. Rev. 139 (2008). doi:10.1007/s11214-008-9404-6

  • A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15(5), 433–435 (1988)

    Article  ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, J.H. Lee, A.I.F. Stewart, Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8, 629–632 (1981)

    Article  ADS  Google Scholar 

  • D. Najib, A.F. Nagy, G. Toth, Y. Ma, Three-dimensional, multi-fluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. 116, A05204 (2011). doi:10.1029/2010JA016272

    ADS  Google Scholar 

  • F. Němec, D.D. Morgan, D.A. Gurnett, F. Duru, Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res. 115, E12009 (2010). doi:10.1029/2010JE003663

    Article  ADS  Google Scholar 

  • F. Němec, D.D. Morgan, D.A. Gurnett, D.A. Brain, Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. 116, E06006 (2011). doi:10.1029/2011JE003804

    ADS  Google Scholar 

  • E. Nielsen, M. Fraenz, H. Zou et al., Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars. Planet. Space Sci. 55, 2164–2172 (2007)

    Article  ADS  Google Scholar 

  • A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: Results from the Neutral Mass Spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977)

    Article  ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Häusler et al., A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005)

    Article  ADS  Google Scholar 

  • D.J. Pawlowski, S.W. Bougher, Comparative aeronomy: the effects of solar flares at Earth and Mars, in Comparative Climatology of Terrestrial Planets Conference, Boulder, Colorado (2012)

    Google Scholar 

  • D.J. Pawlowski, S.W. Bougher, P. Chamberlain, Modeling the response of the martian upper atmosphere to solar flares, in 2011 Fall AGU Meeting, San Francisco, California (2011)

    Google Scholar 

  • L.J. Paxton, Pioneer Venus Orbiter ultraviolet spectrometer limb observations: Analysis and interpretation of the 166- and 156-nm data. J. Geophys. Res. 90, 5089–5096 (1985)

    Article  ADS  Google Scholar 

  • T. Penz, I. Arshukova, N. Terada, H. Shinagawa, N.V. Erkaev, H.K. Biernat, H. Lammer, A comparison of magnetohydrodynamic instabilities at the Martian ionopause. Adv. Space Res. 36(1), 2049–2056 (2005). doi:10.1016/j.asr.2004.11.039

    Article  ADS  Google Scholar 

  • A. Safaeinili, W. Kofman, J. Mouginot et al., Estimation of the total electron content of the martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204 (2007). doi:10.1029/2007GL032154

    Article  ADS  Google Scholar 

  • R. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  • A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977)

    Article  ADS  Google Scholar 

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    Article  ADS  Google Scholar 

  • M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009)

    Article  ADS  Google Scholar 

  • M.D. Smith, S.W. Bougher, T. Encrenaz, F. Forget, A. Kleinbohl, Thermal structure and composition, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 4

    Google Scholar 

  • A. Stewart, Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of \(\mathrm{CO}_{2}^{+}\), CO and O airglow. J. Geophys. Res. 77, 1 (1972). doi:10.1029/JA077i001p00054

    Article  Google Scholar 

  • A.I.F. Stewart, Revised time dependent model of the martian atmosphere for use in orbit lifetime and sustenance studies. LASP-JPL Internal Report, NQ-802429, Jet Propulsion Lab, Pasadena, California (1987)

  • A.I. Stewart, C.A. Barth, C.W. Hord, A.L. Lane, Mariner 9 ultraviolet spectrometer experiment: Structure of Mars’s upper atmosphere. Icarus 17, 469–474 (1972)

    Article  ADS  Google Scholar 

  • A.I. Stewart, M.J. Alexander, R.R. Meier et al., Atomic oxygen in the martian thermosphere. J. Geophys. Res. 97, 91–102 (1992)

    Article  ADS  Google Scholar 

  • A. Stiepen, J.-C. Gerard, S. Bougher, F. Montmessin, B. Hubert, Mars thermospheric temperatures from CO Cameron and \(\mathrm{CO}_{2}^{+}\) dayglow observations from Mars Express. Icarus (2014, submitted)

  • D.J. Strickland, G.E. Thomas, P.R. Sparks, Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of the O I 1304- and 1356-Å emissions. J. Geophys. Res. 77, 4052–4068 (1972)

    Article  ADS  Google Scholar 

  • D.J. Strickland, A.I. Stewart, C.A. Barth et al., Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-Å emission. J. Geophys. Res. 78, 4547–4559 (1973)

    Article  ADS  Google Scholar 

  • R.H. Tolson, G.M. Keating, G.J. Cancro et al., Application of accelerometer data to Mars Global Surveyor aerobraking operations. J. Spacecr. Rockets 36(3), 323–329 (1999)

    Article  ADS  Google Scholar 

  • R.H. Tolson, A.M. Dwyer, J.L. Hanna et al., Application of accelerometer data to Mars aerobraking and atmospheric modeling. J. Spacecr. Rockets 42(3), 435–443 (2005)

    Article  ADS  Google Scholar 

  • R.H. Tolson, G.M. Keating, R.W. Zurek et al., Application of accelerometer data to atmospheric modeling during Mars aerobraking operations. J. Spacecr. Rockets 44(6), 1172–1179 (2007)

    Article  ADS  Google Scholar 

  • R.H. Tolson, E. Bemis, S. Hough et al., Atmospheric modeling using accelerometer data during Mars Reconnaissance Orbiter aerobraking operations. J. Spacecr. Rockets 45(3), 511–518 (2008)

    Article  ADS  Google Scholar 

  • A. Valeille, M.R. Combi, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. J. Geophys. Res. 114, E11005 (2009a). doi:10.1029/2009JE003388

    Article  ADS  Google Scholar 

  • A. Valeille, M.R. Combi, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations and evolution over history. J. Geophys. Res. 114, E11006 (2009b). doi:10.1029/2009JE003389

    Article  ADS  Google Scholar 

  • A. Valeille, M.R. Combi, V. Tenishev et al., A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010a)

    Article  ADS  Google Scholar 

  • A. Valeille, S.W. Bougher, V. Tenishev, M.R. Combi, A.F. Nagy, Water loss and evolution of the upper atmosphere and exosphere over Martian history. Icarus 206, 28–39 (2010b)

    Article  ADS  Google Scholar 

  • Y.-C. Wang, J.G. Luhmann, F. Leblanc, X. Fang, R.E. Johnson, Y. Ma, W.-H. Ip, L. Li, Modeling of the sputtering efficiency for Martian atmosphere, in Abstract P23A-1907 Presented at 2012 Fall Meeting, AGU, San Francisco, CA, 3–7 Dec. 2012 (2012)

  • R.J. Wilson, Evidence for non-migrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment. Geophys. Res. Lett. 29(7) (2002). doi:10.1029/2001GL013975

  • P.G. Withers, Mars Gobal Surveyor and Mars Odyssey accelerometer observations of the martian upper atmosphere during aerobraking. Geophys. Res. Lett. 33, L02201 (2006). doi:10.1029/2005GL024447

    Article  ADS  Google Scholar 

  • P.G. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009)

    Article  ADS  Google Scholar 

  • P.G. Withers, R. Pratt, An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225, 378–389 (2013)

    Article  ADS  Google Scholar 

  • P.G. Withers, S.W. Bougher, G.M. Keating, The effects of topographically controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003)

    Article  ADS  Google Scholar 

  • P.G. Withers, M. Mendillo, H. Risbeth et al., Ionospheric characteristics above martian crustal magnetic anomalies. Geophys. Res. Lett. 32, L16204 (2005). doi:10.1029/2005GL023483

    Article  ADS  Google Scholar 

  • M. Yagi, F. Leblanc, J.Y. Chaufray, F. Gonzalez-Galindo, S. Hess, R. Modolo, Mars exospheric thermal and non-thermal components: Seasonal and local variations. Icarus 221, 682–693 (2012)

    Article  ADS  Google Scholar 

  • M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, J. Kim, A post-Pioneer Venus reassessment of the martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. 95, 14829–14839 (1990a)

    Article  ADS  Google Scholar 

  • M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 17095–17102 (1990b)

    Article  ADS  Google Scholar 

  • R.W. Zurek et al., Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0053-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Bougher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougher, S.W., Cravens, T.E., Grebowsky, J. et al. The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape. Space Sci Rev 195, 423–456 (2015). https://doi.org/10.1007/s11214-014-0053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0053-7

Keywords

Navigation