Skip to main content
Log in

Magnetic Helicity and Large Scale Magnetic Fields: A Primer

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object’s history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • K. Asada, M. Inoue, M. Nakamura, S. Kameno, H. Nagai, Astrophys. J. 682, 798 (2008)

    ADS  Google Scholar 

  • S.A. Balbus, Annu. Rev. Astron. Astrophys. 41, 555 (2003)

    ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Astrophys. J. 376, 214 (1991)

    ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Rev. Mod. Phys. 70, 1 (1998)

    ADS  Google Scholar 

  • R. Beck, Space Sci. Rev. 166, 215 (2012)

    ADS  Google Scholar 

  • P.M. Bellan, Spheromaks (Imperial College Press, London, 2000)

    Google Scholar 

  • M.A. Berger, G.B. Field, J. Fluid Mech. 147, 133 (1984)

    MathSciNet  ADS  Google Scholar 

  • P. Bhat, K. Subramanian, Mon. Not. R. Astron. Soc. 429, 2469 (2013)

    ADS  Google Scholar 

  • P. Bhat, E.G. Blackman, K. Subramanian, Mon. Not. R. Astron. Soc. 438, 2954 (2014)

    ADS  Google Scholar 

  • A. Bhattacharjee, E. Hameiri, Phys. Rev. Lett. 57, 206 (1986)

    ADS  Google Scholar 

  • E.G. Blackman, Recent developments in magnetic dynamo theory, in Lecture Notes in Physics, vol. 614, 2003, p. 432

    Google Scholar 

  • E.G. Blackman, Plasma Phys. Control. Fusion 46, 423 (2004)

    ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Astrophys. J. Lett. 534, 984 (2000a)

    ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Mon. Not. R. Astron. Soc. 318, 724 (2000b)

    ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Phys. Rev. Lett. 89, 265007 (2002)

    ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Phys. Plasmas 11, 3264 (2004)

    MathSciNet  ADS  Google Scholar 

  • E.G. Blackman, A. Brandenburg, Astrophys. J. 579, 359 (2002)

    ADS  Google Scholar 

  • E.G. Blackman, A. Brandenburg, Astrophys. J. Lett. 584, L99 (2003)

    ADS  Google Scholar 

  • E.G. Blackman, A. Hubbard, Mon. Not. R. Astron. Soc. (2014, drafted for submission)

  • E.G. Blackman, M.E. Pessah, Astrophys. J. 704, L113 (2009)

    ADS  Google Scholar 

  • E.G. Blackman, K. Subramanian, Mon. Not. R. Astron. Soc. 429, 1398, BS13 (2013)

    ADS  Google Scholar 

  • E.G. Blackman, A. Frank, C. Welch, Astrophys. J. 546, 288 (2001)

    ADS  Google Scholar 

  • R.D. Blandford, D.G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982)

    MATH  ADS  Google Scholar 

  • J. Braithwaite, H.C. Spruit, Nature 431, 819 (2004)

    ADS  Google Scholar 

  • A. Brandenburg, in Theory of Black Hole Accretion Disks, ed. by M.A. Abramowicz, G. Bjornsson, J.E. Pringle (Cambridge University Press, Cambridge, 1998), p. 61

    Google Scholar 

  • A. Brandenburg, Astrophys. J. 550, 824 (2001)

    ADS  Google Scholar 

  • A. Brandenburg, Astrophys. J. 625, 539 (2005)

    ADS  Google Scholar 

  • A. Brandenburg, Astrophys. J. 697, 1206 (2009)

    ADS  Google Scholar 

  • A. Brandenburg, K.J. Donner, Mon. Not. R. Astron. Soc. 288, L29 (1997)

    ADS  Google Scholar 

  • A. Brandenburg, A. Lazarian, Space Sci. Rev. 178, 163 (2013)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, Phys. Rep. 417, 1 (2005)

    MathSciNet  ADS  Google Scholar 

  • A. Brandenburg, A. Nordlund, R.F. Stein, U. Torkelsson, Astrophys. J. 446, 741 (1995)

    ADS  Google Scholar 

  • A. Brandenburg, D. Sokoloff, K. Subramanian, Space Sci. Rev. 169, 123 (2012)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, A. Balogh, M.L. Goldstein, Astrophys. J. 734, 9 (2011)

    ADS  Google Scholar 

  • A. Brandenburg, D. Sokoloff, K. Subramanian, Space Sci. Rev. 169, 123 (2012)

    ADS  Google Scholar 

  • V. Bujarrabal, A. Castro-Carrizo, J. Alcolea, C. Sánchez Contreras, Astron Astrophys. 377, 868 (2001)

    ADS  Google Scholar 

  • S. Candelaresi, A. Hubbard, A. Brandenburg, D. Mitra, Phys. Plasmas 18, 012903 (2011)

    ADS  Google Scholar 

  • J. Chae, Y.-J. Moon, Y.-D. Park, Sol. Phys. 223, 39 (2004)

    ADS  Google Scholar 

  • L. Chamandy, K. Subramanian, A. Shukurov, Mon. Not. R. Astron. Soc. 428, 3569 (2013)

    ADS  Google Scholar 

  • P. Charbonneau, SASS 39 (2013)

  • C.J. Copi, F. Ferrer, T. Vachaspati, A. Achúcarro, Phys. Rev. Lett. 101, 171302 (2008)

    ADS  Google Scholar 

  • A. Díaz-Gil, J. García-Bellido, M. García Pérez, A. González-Arroyo, Phys. Rev. Lett. 100, 241301 (2008)

    ADS  Google Scholar 

  • S.W. Davis, J.M. Stone, M.E. Pessah, Astrophys. J. 713, 52 (2010)

    ADS  Google Scholar 

  • P. Démoulin, M.A. Berger, Sol. Phys. 215, 203 (2003)

    ADS  Google Scholar 

  • F. Del Sordo, G. Guerrero, A. Brandenburg, Mon. Not. R. Astron. Soc. 429, 1686 (2013)

    ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, Space Sci. Rev. 144, 67 (2009)

    ADS  Google Scholar 

  • F. Ebrahimi, A. Bhattacharjee, Phys. Rev. Lett. 112, 125003 (2014)

    ADS  Google Scholar 

  • G. Field, AIPC 144, 324 (1986)

    ADS  Google Scholar 

  • G.B. Field, E.G. Blackman, Astrophys. J. 572, 685 (2002)

    ADS  Google Scholar 

  • G.B. Field, S.M. Carroll, Phys. Rev. D, Part. Fields 62, 103008 (2000)

    ADS  Google Scholar 

  • G.B. Field, R.D. Rogers, Astrophys. J. 403, 94 (1993)

    ADS  Google Scholar 

  • J.M. Finn, T.M. Antonsen, Comments Plasma Phys. Control. Fusion 9, 111123 (1985)

    Google Scholar 

  • D.C. Gabuzda, D.M. Christodoulou, I. Contopoulos, D. Kazanas, Int. J. Mod. Phys. Conf. Ser. 355, 012019 (2012)

    ADS  Google Scholar 

  • D.C. Gabuzda, V.M. Vitrishchak, M. Mahmud, S.P. O’Sullivan, Mon. Not. R. Astron. Soc. 384, 1003 (2008)

    ADS  Google Scholar 

  • S.E. Gibson et al., Astrophys. J. 574, 1021 (2002)

    ADS  Google Scholar 

  • G.A. Glatzmaier, Annu. Rev. Earth Planet. Sci. 30, 237 (2002)

    ADS  Google Scholar 

  • O. Gressel, Mon. Not. R. Astron. Soc. 405, 41 (2010)

    ADS  Google Scholar 

  • A.V. Gruzinov, P.H. Diamond, Phys. Plasmas 3, 1853 (1996)

    ADS  Google Scholar 

  • X. Guan, C.F. Gammie, Astrophys. J. 728, 130 (2011)

    ADS  Google Scholar 

  • J. Hao, M. Zhang, Astrophys. J. 733, L27 (2011)

    ADS  Google Scholar 

  • T. Heinemann, J.C. McWilliams, A.A. Schekochihin, Phys. Rev. Lett. 107, 255004 (2011)

    ADS  Google Scholar 

  • A. Hubbard, A. Brandenburg, Geophys. Astrophys. Fluid Dyn. 104, 577 (2010)

    MathSciNet  ADS  Google Scholar 

  • A. Hubbard, A. Brandenburg, Astrophys. J. 727, 11 (2011)

    ADS  Google Scholar 

  • H. Ji, S.C. Prager, Magnetohydrodynamics 38, 191 (2002)

    ADS  Google Scholar 

  • T. Kahniashvili, A.G. Tevzadze, A. Brandenburg, A. Neronov, Phys. Rev. D 87, 083007 (2013)

    ADS  Google Scholar 

  • A.P. Kazantsev, J. Exp. Theor. Phys. 26, 1031 (1968)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Korpi, A. Brandenburg, Astron. Astrophys. 491, 353 (2008)

    MATH  ADS  Google Scholar 

  • P.J. Käpylä, M.J. Korpi, Mon. Not. R. Astron. Soc. 413, 901 (2011)

    ADS  Google Scholar 

  • K. Kemel, A. Brandenburg, H. Ji, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 84, 056407 (2011)

    ADS  Google Scholar 

  • N.I. Kleeorin, A.A. Ruzmaikin, Magnetohydrodynamics 18, 116 (1982)

    Google Scholar 

  • F. Krause, K.H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Elmsford, 1980)

    MATH  Google Scholar 

  • A. Konigl, Astrophys. J. 342, 208 (1989)

    ADS  Google Scholar 

  • R.M. Kulsrud, E.G. Zweibel, Rep. Prog. Phys. 71, 046901 (2008)

    ADS  Google Scholar 

  • R.M. Kulsrud, R. Cen, J.P. Ostriker, D. Ryu, Astrophys. J. 480, 481 (1997)

    ADS  Google Scholar 

  • G. Lesur, G.I. Ogilvie, Astron. Astrophys. 488, 451 (2008)

    MATH  ADS  Google Scholar 

  • E.-K. Lim, H. Jeong, J. Chae, Y.-J. Moon, Astrophys. J. 656, 1167 (2007)

    ADS  Google Scholar 

  • R.V.E. Lovelace, D.M. Rothstein, G.S. Bisnovatyi-Kogan, Astrophys. J. 701, 885 (2009)

    ADS  Google Scholar 

  • D. Lynden-Bell, Mon. Not. R. Astron. Soc. 369, 1167 (2006)

    ADS  Google Scholar 

  • M. Lyutikov, V.I. Pariev, D.C. Gabuzda, Mon. Not. R. Astron. Soc. 360, 869 (2005)

    ADS  Google Scholar 

  • J. Maron, E.G. Blackman, Astrophys. J. 566, L41 (2002)

    ADS  Google Scholar 

  • S.F. Martin, A.H. McAllister, Geophys. Monogr. 99, 127 (1997)

    Google Scholar 

  • D. Mitra, A. Brandenburg, Mon. Not. R. Astron. Soc. 420, 2170 (2012)

    ADS  Google Scholar 

  • D. Mitra, S. Candelaresi, P. Chatterjee, R. Tavakol, A. Brandenburg, Astron. Nachr. 331, 130 (2010)

    MATH  ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • S. Ortolani, D.D. Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific, Singapore, 1993)

    Google Scholar 

  • K. Park, E.G. Blackman, Mon. Not. R. Astron. Soc. 423, 2120 (2012)

    ADS  Google Scholar 

  • E.N. Parker, Clarendon/Oxford University Press, Oxford/New York, 1979, 858 pp.

  • R.F. Penna, R. Narayan, A. Sądowski, Mon. Not. R. Astron. Soc. 436, 3741 (2013)

    ADS  Google Scholar 

  • M.E. Pessah, C.-K. Chan, D. Psaltis, Phys. Rev. Lett. 97, 221103 (2006)

    ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, T. Sakurai, M. Hagino, Astrophys. J. 677, 719 (2008)

    ADS  Google Scholar 

  • A. Pouquet, U. Frisch, J. Leorat, J. Fluid Mech. 77, 321 (1976)

    MATH  ADS  Google Scholar 

  • H. Ji, S.C. Prager, J.S. Sarff, Phys. Rev. Lett. 74, 2945 (1995)

    ADS  Google Scholar 

  • R.E. Pudritz, M.J. Hardcastle, D.C. Gabuzda, Space Sci. Rev. 169, 27 (2012)

    ADS  Google Scholar 

  • P.H. Roberts, E.M. King, Rev. Plasma Phys. 76, 096801 (2013)

    Google Scholar 

  • G. Rüdiger, L.L. Kichatinov, Astron. Astrophys. 269, 581 (1993)

    ADS  Google Scholar 

  • D.M. Rust, Geophys. Monogr. 111, 221 (1999)

    Google Scholar 

  • D.M. Rust, A. Kumar, Astrophys. J. 464, L199 (1996)

    ADS  Google Scholar 

  • A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic Fields of Galaxies (Kluwer Academic, Dordrecht, 1988)

    Google Scholar 

  • A. Shukurov, Lect. Notes Phys. 664, 113 (2005)

    ADS  Google Scholar 

  • A. Shukurov, D. Sokoloff, K. Subramanian, A. Brandenburg, Astron. Astrophys. 448, L33 (2006)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, G.W. Hammett, J.L. Maron, J.C. McWilliams, New J. Phys. 4, 84 (2002)

    ADS  Google Scholar 

  • C.J. Schrijver, C. Zwaan, Solar and Stellar Magnetic Activity (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  • P.W. Schuck, Astrophys. J. 632, L53 (2005)

    ADS  Google Scholar 

  • V.B. Semikoz, D.D. Sokoloff, J.W.F. Valle, J. Cosmol. Astropart. Phys. 6, 8 (2012)

    ADS  Google Scholar 

  • J.B. Simon, J.F. Hawley, K. Beckwith, Astrophys. J. 730, 94 (2011)

    ADS  Google Scholar 

  • K.A. Sorathia, C.S. Reynolds, J.M. Stone, K. Beckwith, Astrophys. J. 749, 189 (2012)

    ADS  Google Scholar 

  • S. Sridhar, N.K. Singh, ArXiv e-prints (2013)

  • H.R. Strauss, Phys. Fluids 28, 2786 (1985)

    MATH  ADS  Google Scholar 

  • H.R. Strauss, Phys. Fluids 29, 3008 (1986)

    MATH  ADS  Google Scholar 

  • K. Subramanian, Phys. Rev. Lett. 90, 245003 (2003)

    ADS  Google Scholar 

  • K. Subramanian, Astron. Nachr. 331, 110 (2010)

    MATH  ADS  Google Scholar 

  • K. Subramanian, A. Brandenburg, Astrophys. J. Lett. 648, L71 (2006)

    ADS  Google Scholar 

  • S. Sur, A. Shukurov, K. Subramanian, Mon. Not. R. Astron. Soc. 377, 874 (2007)

    ADS  Google Scholar 

  • T.K. Suzuki, S.-i. Inutsuka, arXiv:1309.6916 (2013)

  • J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)

    ADS  Google Scholar 

  • J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)

    ADS  Google Scholar 

  • A.G. Tevzadze, L. Kisslinger, A. Brandenburg, T. Kahniashvili, Astrophys. J. 759, 54 (2012)

    ADS  Google Scholar 

  • S.M. Tobias, F. Cattaneo, N.H. Brummell, Astrophys. J. 685, 596 (2008)

    ADS  Google Scholar 

  • C.L. Van Eck et al., Astrophys. J. 728, 97 (2011)

    ADS  Google Scholar 

  • E.T. Vishniac, Astrophys. J. 696, 1021 (2009)

    ADS  Google Scholar 

  • E.T. Vishniac, A. Brandenburg, Astrophys. J. 475, 263 (1997)

    ADS  Google Scholar 

  • E.T. Vishniac, J. Cho, Astrophys. J. 550, 752 (2001)

    ADS  Google Scholar 

  • E.T. Vishniac, D. Shapovalov, Astrophys. J. 780, 144 (2014)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Astrophys. J. 599, 1404 (2003)

    ADS  Google Scholar 

  • L.M. Widrow, D. Ryu, D.R.G. Schleicher, K. Subramanian, C.G. Tsagas, R.A. Treumann, Space Sci. Rev. 166, 37 (2012)

    ADS  Google Scholar 

  • L. Woltjer, Proc. Natl. Acad. Sci. USA 44, 489 (1958a)

    MATH  MathSciNet  ADS  Google Scholar 

  • L. Woltjer, Proc. Natl. Acad. Sci. USA 44, 833 (1958b)

    MATH  MathSciNet  ADS  Google Scholar 

  • T.A. Yousef, A. Brandenburg, G. Rüdiger, Astron. Astrophys. 411, 321 (2003)

    ADS  Google Scholar 

  • T.A. Yousef, T. Heinemann, A.A. Schekochihin, N. Kleeorin, I. Rogachevskii, A.B. Iskakov, S.C. Cowley, J.C. McWilliams, Ph R L 100, 184501 (2008)

    Google Scholar 

  • H. Zhang, S. Yang, Y. Gao, J. Su, D.D. Sokoloff, K. Kuzanyan, Astrophys. J. 719, 1955 (2010)

    ADS  Google Scholar 

  • H. Zhang, D. Moss, N. Kleeorin, K. Kuzanyan, I. Rogachevskii, D. Sokoloff, Y. Gao, H. Xu, Astrophys. J. 751, 47 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

I acknowledge NSF grant AST-1109285, and thank the organizers of the ISSI Workshop on “Multi-Scale Structure Formation and Dynamics of Cosmic Plasmas”, and the organizers of the Lyman Spitzer 100th birthday conference for engaging meetings in Bern and Princeton respectively. I also acknowledge particular discussions with P. Bhat, A. Bhattacharjee, A. Brandenburg, F. Ebrahimi, G. Field, A. Hubbard, F. Nauman, J. Stone and K. Subramanian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Blackman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blackman, E.G. Magnetic Helicity and Large Scale Magnetic Fields: A Primer. Space Sci Rev 188, 59–91 (2015). https://doi.org/10.1007/s11214-014-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0038-6

Keywords

Navigation