Skip to main content
Log in

Selection of the Mars Science Laboratory Landing Site

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (<−1 km) for sufficient atmosphere to slow the spacecraft, (3) relief of <100–130 m at baselines of 1–1000 m for control authority and sufficient fuel during powered descent, (4) slopes of <30° at baselines of 2–5 m for rover stability at touchdown, (5) moderate rock abundance to avoid impacting the belly pan during touchdown, and (6) a radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • P. Aftabi, Laboratory testing of the ice-salt intrusions and extrusions in craters for determining Mars landing site, in Lunar Planet. Sci., vol. XXXIX (Lunar and Planetary Institute, Houston, 2008). Abstract 1179

    Google Scholar 

  • K. Ali, C. Vanelli, J. Biesiadecki, M. Maimone, Y. Cheng, M. San Martin, J. Alexander, Attitude and position estimation on the Mars Exploration Rovers, in IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005

    Google Scholar 

  • F.S. Anderson, A.F.C. Haldemann, N.T. Bridges, M.P. Golombek, T.J. Parker, G. Neumann, Analysis of MOLA data for the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8084 (2003). doi:10.1029/2003JE002125

    Article  Google Scholar 

  • J.A. Anderson, S.C. Sides, D.L. Soltesz, T.L. Sucharski, K.J. Becker, Modernization of the integrated software for imagers and spectrometers, in Lunar Planet. Sci., vol. XXXV (Lunar and Planetary Institute, Houston, 2004). Abstract 2039

    Google Scholar 

  • R.B. Anderson, J.F. Bell III, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010)

    Article  ADS  Google Scholar 

  • V. Ansan, N. Mangold, A. Lucas, A. Gendrin, S. Le Mouelic, F. Poulet, J.-P. Bibring, Omega Co-Investigator Team, Analysis of layered deposits in Terby Crater (Hellas region, Mars) using multiple datasets MOC, THEMIS and OMEGA/MEX, in Lunar Planet. Sci., vol. XXXVII (Lunar and Planetary Institute, Houston, 2005). Abstract 1378

    Google Scholar 

  • V. Ansan, D. Loizeau, N. Mangold, S. Le Mouélic, J. Carter, F. Poulet, G. Dromart, A. Lucas, J.-P. Bibring, A. Gendrin, B. Gondet, Y. Langevin, Ph. Masson, S. Murchie, J.F. Mustard, G. Neukum, Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus (2011). doi:10.1016/j.icarus.2010.09.011

    Google Scholar 

  • R.E. Arvidson et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. J. Geophys. Res. 111, E12S08 (2006). doi:10.1029/2006JE002728

    Article  ADS  Google Scholar 

  • R. Arvidson et al., Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res. 113, E00A03 (2008). doi:10.1029/2007JE003021

    Article  ADS  Google Scholar 

  • J.L. Bandfield, V.E. Hamilton, P.R. Christensen, A global view of martian surface compositions from MGS-TES. Science 287(5458), 1626–1630 (2000). doi:10.1126/science.287.5458.1626

    Article  ADS  Google Scholar 

  • J.L. Bandfield, D. Rogers, M.D. Smith, P.R. Christensen, Atmospheric correction and surface spectral unit mapping using thermal emission imaging system data. J. Geophys. Res. 109, E10008 (2004). doi:10.1029/2004JE002289

    Article  ADS  Google Scholar 

  • R.A. Beyer, R.L. Kirk, Meter-scale slopes of candidate MSL landing sites from point photoclinometry. Space Sci. Rev., this issue

  • R.A. Beyer, A.S. McEwen, R.L. Kirk, Meter-scale slopes of candidate MER landing sites from point photoclinometry. J. Geophys. Res. 108(E12), 8085 (2003). doi:10.1029/2003JE002120

    Article  Google Scholar 

  • P. Bhandari, G. Birur, M. Pauken, A. Paris, K. Novak, M. Prina, B. Ramirez, D. Bame, Mars Science Laboratory thermal control architecture, in ICES 2005 Conference, Rome, Italy, July 2005

    Google Scholar 

  • J.P. Bhattacharya, T.H.D. Payenberg, S.D. Lang, M.C. Bourke, Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophys. Res. Lett. 32, L10201 (2005). doi:10.1029/2005GL022747

    Article  ADS  Google Scholar 

  • J.-P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, OMEGA team, Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005)

    Article  ADS  Google Scholar 

  • J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, OMEGA team, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006). doi:10.1126/science.1122659

    Article  ADS  Google Scholar 

  • J.J. Biesiadecki, M.W. Maimone, The Mars Exploration Rover surface mobility flight software: Driving ambition, in March 2006 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, 8 March 2006

    Google Scholar 

  • J.J. Biesiadecki et al., Mars Exploration Rover surface operations: Driving opportunity at Meridiani Planum, in October 2005 IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005

    Google Scholar 

  • J.J. Biesiadecki, P.C. Leger, M.W. Maimone, Tradeoffs between directed and autonomous driving on the Mars Exploration Rovers. Int. J. Robot. Res. 26(1), 91–104 (2007)

    Article  Google Scholar 

  • J. Biesiadecki, R. Liebersbach, M. Maimone, Mars Exploration Rover mobility and IDD downlink analysis tools, in International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS) Proceedings, Los Angeles, CA, 27 February 2008

    Google Scholar 

  • D. Biggs, M. Andrews, Acceleration of iterative image restoration algorithms. J. Appl. Opt. 36(8), 1766–1775 (1997)

    Article  ADS  Google Scholar 

  • J.L. Bishop, E.Z. Noe Dobrea, N.K. McKeown, M. Parente, B.L. Ehlmann, J.R. Michalski, R.E. Milliken, F. Poulet, G.A. Swayze, J.F. Mustard, S.L. Murchie, J.-P. Bibring, Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830–833 (2008). doi:10.1126/science.1159699

    Article  ADS  Google Scholar 

  • M.J. Broxton, L.J. Edwards, The Ames Stereo pipeline: Automated 3D surface reconstruction from orbital imagery, in Lunar and Planetary Science, vol. XXXIX (Lunar and Planetary Institute, Houston, 2008). Abstract #2419 (CD-ROM)

    Google Scholar 

  • P. Brugarolas, M. San Martin, E. Wong, The RCS attitude controller for the exo-atmospheric and guided Entry phases of the Mars Science Laboratory, in International Planetary Probe Workshop, Barcelona, Spain (2010)

    Google Scholar 

  • B.J. Butler, The 3.5-cm radar investigation of Mars and Mercury: Planetological implications. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1994, 28

  • N.A. Cabrol, H.E. Newson, R. Landheim, C.P. McKay, Hydrogeologic evolution of Gale crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999)

    Article  ADS  Google Scholar 

  • B. Cantor, P.B. James, M. Caplinger, M.J. Wolf, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653–23688 (2001)

    Article  ADS  Google Scholar 

  • J. Carsten, A. Rankin, D. Ferguson, A. Stentz, Global path planning on board the Mars Exploration Rovers, in Proceedings of the 2007 IEEE Aerospace Conference, March 2007

    Google Scholar 

  • A. Chen, A. Vasavada, A. Cianciolo, J. Barnes, D. Tyler, S. Rafkin, D. Hinson, S. Lewis, Atmospheric risk assessment for the Mars Science Laboratory entry, descent, and landing system, in IEEE Aerospace Conference, Big Sky, MT (2010). IEEEAC paper#1153

    Google Scholar 

  • Y. Cheng, A.E. Johnson, L.H. Matthies, C.F. Olson, Optical landmark detection for spacecraft navigation, in AAS/AIAA Astrodynamics Specialist Conference, Ponce, Puerto Rico (2003). http://trs-new.jpl.nasa.gov/dspace/handle/2014/6431

    Google Scholar 

  • Y. Cheng, M. Maimone, L. Matthies, Visual odometry on the Mars Exploration Rovers, in IEEE Conference on Systems, Man and Cybernetics, The Big Island, Hawaii, USA, October 2005

    Google Scholar 

  • Y. Cheng, M. Maimone, L. Matthies, Visual odometry on the Mars Exploration Rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)

    Article  Google Scholar 

  • P.R. Christensen, Martian dust mantling and surface composition: Interpretation of thermophysical properties. J. Geophys. Res. 87, 9985–9998 (1982)

    Article  ADS  Google Scholar 

  • P.R. Christensen, The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986a)

    Article  ADS  Google Scholar 

  • P.R. Christensen, Regional dust deposits on Mars: Physical properties, age, and history. J. Geophys. Res. 91, 3533–3545 (1986b)

    Article  ADS  Google Scholar 

  • P.R. Christensen, Aqueous mineral deposits in an ancient, channeled, equatorial terrain. Abstract Submitted for a New MSL Landing Site to the Landing Site Steering Committee, Aug. 22, 2009, posted at https://marsoweb.nas.nasa.gov/landingsites/

  • P.R. Christensen, M.C. Malin, High resolution thermal imaging of Mars (abs.), in Lunar Planet. Sci., vol. XIX (Lunar and Planetary Institute, Houston, 1988), pp. 180–181

    Google Scholar 

  • P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 686–727

    Google Scholar 

  • P.R. Christensen, D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown, S. Silverman, Thermal Emission Spectrometer experiment: Mars Observer Mission. J. Geophys. Res. 97(E5), 7719–7734 (1992)

    Article  ADS  Google Scholar 

  • P.R. Christensen et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001)

    Article  ADS  Google Scholar 

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004)

    Article  ADS  Google Scholar 

  • G. Dromart, C. Quantin, O. Broucke, Stratigraphic architectures spotted in southern Melas Chasma, Vallis Marineris, Mars. Geology 35(4), 363–366 (2007)

    Article  ADS  Google Scholar 

  • K.S. Edgett, The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars 1, 5–58 (2005). doi:10.1555/mars.2005.0002

    Article  ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, C.I. Fassett, S.C. Schon, J.W. Head III, D.J. Des Marais, J.A. Grant, S.L. Murchie, CRISM team, Clay mineralogy and organic preservation potential of lacustrine sediments from a Martian delta environment, Jezero crater, Nili Fossae, Mars. Nat. Geosci. 1 (2008a). doi:10.1038/ngeo207

  • B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. Des Marias, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008b). doi:10.1126/science.1164759

    Article  ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. Des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, S.L. Murchie, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2010). doi:10.1029/2009JE003339

    Article  Google Scholar 

  • E.S. Eliason et al., Software interface specification for HiRISE reduced data record products. MRO JPL Document D-32006, 2009, online at http://hirise.lpl.arizona.edu/pdf/HiRISE_RDR_v12_DTM_11_25_2009.pdf

  • W.H. Farrand, T.D. Glotch, J.W. Rice Jr., J.A. Hurowitz, G.A. Swayze, Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus 204(2), 478–488 (2009)

    Article  ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, L14201 (2005). doi:10.1029/2005GL023456

    Article  ADS  Google Scholar 

  • R.L. Fergason et al., THEMIS thermal inertia of the MSL landing sites. Space Sci. Rev., this issue

  • R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006b). doi:10.1029/2005JE002583

    Article  ADS  Google Scholar 

  • R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications. J. Geophys. Res. 111, E12004 (2006a). doi:10.1029/2006JE002735

    Article  ADS  Google Scholar 

  • J.B. Garvin, J.J. Frawley, J.B. Abshire, Vertical roughness of Mars from Mars Orbiter Laser Altimeter. Geophys. Res. Lett. 26, 381–384 (1999)

    Article  ADS  Google Scholar 

  • S.B. Goldberg, M.W. Maimone, L. Matthies, Stereo vision and rover navigation software for planetary exploration, in March 2002 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, vol. 5 (2002), pp. 2025–2036. doi:10.1109/AERO.2002.1035370

    Google Scholar 

  • M. Golombek, D. Rapp, Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions. J. Geophys. Res. 102, 4117–4129 (1997)

    Article  ADS  Google Scholar 

  • M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997a)

    Article  ADS  Google Scholar 

  • M.P. Golombek et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997b)

    Article  ADS  Google Scholar 

  • M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999)

    Article  ADS  Google Scholar 

  • M.P. Golombek et al., Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003a). doi:10.1029/2003JE002074, 48pp.

    Article  Google Scholar 

  • M.P. Golombek et al., Rock size-frequency distributions on Mars and implications for MER landing safety and operations. J. Geophys. Res. 108(E12), 8086 (2003b). doi:10.1029/2002JE002035

    Article  Google Scholar 

  • M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436 (2005). doi:10.1038/nature03600

  • M. Golombek, J. Grant, L. Lorenzoni, A. Steltzner, A.R. Vasavada, C. Voorhees, M. Watkins M, Preliminary constraints and plans for Mars Science Laboratory landing site selection, in Lunar and Planetary Science, vol. XXXVII (Lunar and Planetary Institute, Houston, 2006a). Abstract #2172 (CD-ROM)

    Google Scholar 

  • M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover transverse. J. Geophys. Res. 111, E02S07 (2006b). doi:10.1029/2005JE002503

    Article  ADS  Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, Landing sites proposed for the Mars Science Laboratory mission, in Lunar and Planetary Science, vol. XXXVIII (Lunar and Planetary Institute, Houston, 2007a). Abstract #1392 (CD-ROM)

    Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, L. Lorenzoni, J. Griffes, Preliminary constraints, plans and proposed landing sites for the Mars Science Laboratory mission, in The Seventh International Conference on Mars, Pasadena, CA, July 9–13, 2007 (Lunar and Planetary Institute, Houston, 2007b). Abstract #3037 (CD-ROM)

    Google Scholar 

  • M.P. Golombek et al., Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 113, E00A09 (2008a). doi:10.1029/2007JE003065

    Article  ADS  Google Scholar 

  • M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008b), pp. 468–497. Chap. 21

    Chapter  Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, E. Noe Dobrea, J. Griffes, T. Parker, Downselection of landing sites for the Mars Science Laboratory, in Lunar and Planetary Science, vol. XXXIX (Lunar and Planetary Institute, Houston, 2008c). Abstract #2181 (CD-ROM)

    Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, Selection of four landing sites for the Mars Science Laboratory, in Lunar and Planetary Science, vol. XL (Lunar and Planetary Institute, Houston, 2009a). Abstract #1404 (CD-ROM)

    Google Scholar 

  • M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, A. Huertas, R.E. Arvidson, T. Heet, J.F. Bell III, M.T. Mellon, A.S. McEwen, Relationships between remote sensing data and surface properties of Mars landing sites, in 40th Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2009b). Abstract 1409 (CD-ROM)

    Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, R. Kirk, R. Fergason, R. Beyer, A. Huertas, R. Milliken, Y. Sun, Landing sites under consideration for Mars Science Laboratory, in 41st Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2010). Abstract #2407 (CD-ROM)

    Google Scholar 

  • M.P. Golombek, A. Huertas, D. Kipp, Rocks and rock size-frequency distributions at the Mars Science Laboratory landing sites, in 42nd Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2011a). Abstract #1547

    Google Scholar 

  • M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, Final four landing sites for the Mars Science Laboratory, in 42nd Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2011b). Abstract #1520

    Google Scholar 

  • M. Golombek, A. Huertas, D. Kipp, F. Calef, Detection and characterization of rocks and rock distribution at the Mars Science Laboratory Landing Sites. Mars (2012), submitted

  • J.A. Grant, T.J. Parker, Drainage evolution of the Margaritifer Sinus region, Mars. J. Geophys. Res. 107, 5066 (2002). doi:10.1029/2001JE001678

    Article  Google Scholar 

  • J.A. Grant, S.A. Wilson, Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011). doi:10.1029/2011GL046844

    Article  Google Scholar 

  • J.A. Grant, R.P. Irwin III, J.P. Grotzinger, R.E. Milliken, L.L. Tornabene, A.S. McEwen, C.M. Weitz, S.W. Squyres, T.D. Glotch, B.J. Thomson, HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008). doi:10.1130/G24340A

    Article  ADS  Google Scholar 

  • J.A. Grant, M.P. Golombek, J. Grotzinger, S.A. Wilson, M. Watkins, A.R. Vasavada, J. Griffes, T. Parker, The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. (2010a). doi:10.1016/j.pss.2010.06.016

    Google Scholar 

  • J.A. Grant, R.P. Irwin III, S.A. Wilson, Aqueous depositional settings in Holden crater, Mars, in Lakes on Mars, ed. by N.A. Cabrol, E.A. Grin (Elsevier, Oxford, 2010b). Chap. 12

    Google Scholar 

  • J.A. Grant, R.P. Irwin III, S.A. Wilson, D. Buczkowski, K. Siebach, A lake in Uzboi Vallis and implications for Late Noachian-Early Hesperian climate on Mars. Icarus 212(1), 110–122 (2011)

    Article  ADS  Google Scholar 

  • J. Grotzinger, Beyond water on Mars. Nat. Geosci. 2, 231–233 (2009). doi:10.1038/ngeo480

    Article  ADS  Google Scholar 

  • J. Grotzinger et al., Mars Science Laboratory Mission and science investigation. Space Sci. Rev., this issue. doi:10.1007/s11214-012-9892-2

  • K. Gwinner, F. Scholten, R. Jaumann, T. Roatsch, J. Oberst, G. Neukum, Global mapping of Mars by systematic derivation of Mars Express HRSC high-resolution digital elevation models and orthoimages, in ISPRS IV/7 Extraterrestrial Mapping Workshop, Houston, TX (2007)

    Google Scholar 

  • K. Gwinner, F. Scholten, M. Spiegel, R. Schmidt, B. Giese, J. Oberst, R. Jaumann, C. Heipke, G. Neukum, Derivation and validation of high-resolution digital terrain models from Mars Express HRSC-data. Photogramm. Eng. Remote Sens. 75(9), 1127–1141 (2009)

    Google Scholar 

  • K. Gwinner, J. Oberst, R. Jaumann, G. Neukum, Regional HRSC multi-orbit digital terrain models for the Mars Science Laboratory candidate landing sites, in 41st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2010a). Abstract 2727 (CD-ROM)

    Google Scholar 

  • K. Gwinner et al., Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth Planet. Sci. Lett. 294, 506 (2010b)

    Article  ADS  Google Scholar 

  • T. Hagfors, Backscattering from an undulating surface with applications to radar returns from the Moon. J. Geophys. Res. 69, 3779–3784 (1964)

    Article  ADS  Google Scholar 

  • A.F.C. Haldemann, D.L. Mitchell, R.F. Jurgens, M.A. Slade, D.O. Muhleman, Mars Pathfinder landing site assessment with Goldstone delay-Doppler and CW radar experiments. J. Geophys. Res. 102, 4097–4106 (1997)

    Article  ADS  Google Scholar 

  • J.K. Harmon, R.E. Arvidson, E.A. Guinness, B.A. Campbell, M.A. Slade, Mars mapping with delay-Doppler radar. J. Geophys. Res. 104, 14065–14089 (1999)

    Article  ADS  Google Scholar 

  • M.H. Hecht, A.R. Vasavada, Transient liquid water near an artificial heat source on Mars. Mars 2, 83–96 (2006). doi:10.1555/mars.2006.0006

    Article  ADS  Google Scholar 

  • T.L. Heet, R.E. Arvidson, S.C. Cull, M.T. Mellon, K.D. Seelos, Geomorphic and geologic settings of the Phoenix Lander mission landing site. J. Geophys. Res. 114, E00E04 (2009). doi:10.1029/2009JE003416

    Article  ADS  Google Scholar 

  • S.W. Hobbs, D.J. Paull, M.C. Bourke, Aeolian processes and dune morphology in Gale Crater. Icarus 210, 102–115 (2010). doi:10.1016/j.icarus.2010.06.006

    Article  ADS  Google Scholar 

  • T.J. Holmes et al., Light microscopic images reconstructed by maximum likelihood, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley (Plenum Press, New York, 1995)

    Google Scholar 

  • B.M. Hynek, R.J. Phillips, The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin. Earth Planet. Sci. Lett. 274, 214–220 (2008)

    Article  ADS  Google Scholar 

  • B.M. Hynek, R.E. Arvidson, R.J. Phillips, Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, 5088 (2002). doi:10.1029/2002JE001891

    Article  Google Scholar 

  • R. Irwin, An overview of the setting of Holden crater. Presentation at the 4th MSL Landing Site Workshop, Sept. 27–29, 2010, in Monrovia, CA. https://marsoweb.nas.nasa.gov/landingsites/msl/workshops/4th_workshop/talks/1_Irwin_Holden.pdf

  • R.P. Irwin III, J.A. Grant, Geologic Map of MTM-15027, -20027, -25027, -25032 Quadrangles, Margaritifer Terra region of Mars. U.S. Geol. Surv. Scientific Investigations Map, scale 1:500,000, 2011

  • B.M. Jakosky, The effects of nonideal surfaces on the derived thermal properties of Mars. J. Geophys. Res. 84(B14), 8252–8262 (1979)

    Article  ADS  Google Scholar 

  • B.M. Jakosky, P.R. Christensen, Global duricrust on Mars: Analysis of remote-sensing data. J. Geophys. Res. 91, 3547–3559 (1986)

    Article  ADS  Google Scholar 

  • D.J. Jerolmack, D. Mohrig, M.T. Zuber, S. Byrne, A minimum time for the formation of Holden northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004). doi:10.1029/2004GL021326

    Article  ADS  Google Scholar 

  • H.H. Kieffer, S.C. Chase Jr., E. Miner, G. Münch, G. Neugebauer, Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78(20), 4291–4312 (1973)

    Article  ADS  Google Scholar 

  • H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(28), 4249–4291 (1977)

    Article  ADS  Google Scholar 

  • J.R. Kim, J.P. Muller, Multi-resolution topographic data extraction from Martian stereo imagery. Planet. Space Sci. 57(14–15), 2095–2112 (2009). doi:10.1016/j.pss.2009.09.024

    Article  ADS  Google Scholar 

  • D. Kipp, Terrain safety assessment in support of the Mars Science Laboratory mission, in IEEE Aerospace Conference, Big Sky, MT (2012). doi:10.1109/AERO.2012.6186995

    Google Scholar 

  • D. Kipp, M. San Martin, J. Essmiller, D. Way, Mars Science Laboratory entry, descent and landing triggers, in IEEE Aerospace Conference, Big Sky, MT (2007). IEEAC paper #1445

    Google Scholar 

  • R. Kirk et al., High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow angle images. J. Geophys. Res. 108(E12), 8088 (2003). doi:10.1029/2003JE002131

    Article  Google Scholar 

  • R.L. Kirk et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008). doi:10.1029/2007JE003000

    Article  ADS  Google Scholar 

  • R.L. Kirk, E. Howington-Kraus, D. Galuszka, B. Redding, J. Antonsen, K. Coker, E. Foster, M. Hopkins, A. Licht, A. Fennema, F. Calef III, S. Nuti, T.J. Parker, M.P. Golombek, “Wall to wall” 1-m topographic coverage of the Mars Science Laboratory candidate landing sites, in 42nd Lunar and Planetary Science Conference (2011a). Abstract #2407

    Google Scholar 

  • R.L. Kirk et al., Near-complete 1-m topographic models of the MSL candidate landing sites: Site safety and quality evaluation, in European Planetary Science Conference, vol. 6, (2011b). Abstract EPSC2011-1465

    Google Scholar 

  • A. Kleinbohl et al., Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114, E10006 (2009). doi:10.1029/2009JE003358

    Article  ADS  Google Scholar 

  • K.W. Larsen, R.F. Jurgens, A.F.C. Haldemann, M.A. Slade, H.C. Rumsey Jr., Terrestrial quadstatic interferometric radar observations of Mars. IEEE Trans. Geosci. Remote Sens. 48(6), 2670–2684 (2010). doi:10.1109/TGRS.2010.2040084

    Article  ADS  Google Scholar 

  • P.C. Leger et al., Mars Exploration Rover surface operations: Driving Spirit at Gusev crater, in October 2005 IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005

    Google Scholar 

  • K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery. J. Geophys. Res. 111, E06001 (2006). doi:10.1029/2005JE002555

    Article  ADS  Google Scholar 

  • D. Loizeau, N. Mangold, F. Poulet, J.-P. Bibring, A. Gendrin, V. Ansan, C. Gomez, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Phyllosilicates in the Mawrth Vallis region of Mars. J. Geophys. Res. 112, E08S08 (2007). doi:10.1029/2006JE002877

    Article  ADS  Google Scholar 

  • D. Loizeau, N. Mangold, F. Poulet, V. Ansan, E. Hauber, J.-P. Bibring, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205, 396 (2010). doi:10.1016/j.icarus.2009.04.018

    Article  ADS  Google Scholar 

  • M. Maimone, J. Morrison, Rover navigation 101: Autonomous rover navigation. JPL Mars Exploration Rover website, January 13, 2004

  • M. Maimone, J. Biesiadecki, E. Tunstel, Y. Cheng, C. Leger, Surface navigation and mobility intelligence on the Mars Exploration Rovers, in Intelligence for Space Robotics, March (TSI Press, San Antonio, 2006), pp. 45–69. Chap. 3

    Google Scholar 

  • M. Maimone, Y. Cheng, L. Matthies, Two years of visual odometry on the Mars Exploration Rovers. J. Field Robot. 24(3), 169–186 (2007a)

    Article  Google Scholar 

  • M.W. Maimone, P.C. Leger, J.J. Biesiadecki, Overview of the Mars Exploration Rovers’ autonomous mobility and vision capabilities, in IEEE International Conference on Robotics and Automation (ICRA) Space Robotics Workshop, Rome, Italy, 14 April 2007b

    Google Scholar 

  • M.C. Malin, K.S. Edgett, Sedimentary Rocks of Early Mars. Science 290(5498), 1927–1937 (2000)

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001a)

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Rock stratigraphy in Gale crater, Mars, in 32nd Lunar and Planetary Science Conference, (Lunar and Planetary Institute, Houston, 2001b). Abstract #1005

    Google Scholar 

  • M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on Mars. Science 302, 1931–1934 (2003). doi:10.1126/science.10905444

    Article  ADS  Google Scholar 

  • M.C. Malin et al., Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007). doi:10.1029/2006JE002808

    Article  ADS  Google Scholar 

  • N. Mangold, F. Poulet, J.F. Mustard, J.-P. Bibring, B. Bondet, Y. Langevin, V. Ansan, P. Masson, C. Fasset, J.W. Head, H. Hoffmann, G. Neukum, Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 112, E08S04 (2007). doi:10.1029/2006JE002835

    Article  ADS  Google Scholar 

  • N. Mangold, V. Ansan, P. Masson, C. Vincendon, Estimate of the aeolian dust thickness in Arabia Terra, Mars: Implications of a thick mantle (20 m) for hydrogen detection. Géomorph. Relief Process. Environ. 1, 23–32 (2009)

    Article  Google Scholar 

  • H. Masursky, N.L. Crabill, The Viking landing sites: Selection and certification. Science 193, 809–812 (1976a)

    Article  ADS  Google Scholar 

  • H. Masursky, N.L. Crabill, Search for the Viking 2 landing site. Science 194, 62–68 (1976b)

    Article  ADS  Google Scholar 

  • H. Masursky, N.L. Crabill, Viking site selection and certification. NASA SP-429, 34pp., 1981

  • L.M. Matthies et al., Computer Vision on Mars. Int. J. Comput. Vis. (2007a). doi:10.1007/s11263-007-0046-z

    Google Scholar 

  • L. Matthies, M. Maimone, Y. Cheng, A. Johnson, R. Willson, Computer vision in the Mars Exploration Rover (MER) mission, in Computational Vision in Neural and Machine Systems (Cambridge University Press, Cambridge, 2007b), pp. 71–84. ISBN 978-0-521-86260-8. Chap. 4

    Google Scholar 

  • S. Mattson, A. Boyd, R.L. Kirk, D.A. Cook, E. Howington-Kraus, HiJACK: Correcting spacecraft jitter in HiRISE images of Mars, in European Planetary Science Conference, vol. 4 (2009). Abstract EPSC2009-0604

    Google Scholar 

  • A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi:10.1029/2005JE002605

    Article  ADS  Google Scholar 

  • A.S. McEwen et al., The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus 205, 2–37 (2010). doi:10.1016/j.icarus.2009.04.023

    Article  ADS  Google Scholar 

  • N.K. McKeown et al., Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009)

    Article  ADS  Google Scholar 

  • M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

    Article  ADS  Google Scholar 

  • M.T. Mellon, W.C. Feldman, T.H. Prettyman, The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004). doi:10.1016/j.icarus.2003.10.022

    Article  ADS  Google Scholar 

  • M.T. Mellon et al., The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 399–427. Chap. 19

    Chapter  Google Scholar 

  • G.F. Mendeck, L.E. Craig, Entry guidance for the 2011 Mars Science Laboratory Mission, in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Portland, Oregon Aug. 8–11 2011. AIAA 2011-6639

    Google Scholar 

  • MEPAG, Special Regions Science Analysis Group et al., Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6, 677–732 (2006). doi:10.1089/ast.2006.6.677

    Article  ADS  Google Scholar 

  • J.M. Metz, J.P. Grotzinger, D. Mohrig, R. Milliken, B. Prather, C. Pirmez, A.S. McEwen, C.M. Weitz, Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114, E10002 (2009). doi:10.1029/2009JE003365

    Article  ADS  Google Scholar 

  • J.R. Michalski, E.Z.N. Noe Dobrea, Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 830–833 (2007). doi:10.1130/G23854A.1

    Article  Google Scholar 

  • J. Michalski, F. Poulet, J.-P. Bibring, N. Mangold, Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data. Icarus 206, 269–289 (2010a). doi:10.1016/j.icarus.2009.09.006

    Article  ADS  Google Scholar 

  • J.R. Michalski et al., The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10(7), 687–703 (2010b)

    Article  ADS  Google Scholar 

  • S.B. Miller, A.S. Walker, Further developments of Leicadigital photogrammetric systems by Helava. ACSM/ASPRS Annu. Conv. Expo. Tech. Pap. 3, 256–263 (1993)

    Google Scholar 

  • S.B. Miller, A.S. Walker, Die Entwicklung der digitalen photogrammetrischen Systeme von Leica und Helava. Z. Photogramm. Fernerkund. 63(1), 4–16 (1995)

    Google Scholar 

  • R.E. Milliken, D. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90(17), 2293–2308 (2010)

    Article  ADS  Google Scholar 

  • R.E. Milliken, J. Grotzinger, J.A. Grant, R. Arvidson, S. Murchie, Understanding sedimentary sources and sinks on Mars from orbit. Geol. Soc. Am. Prog. Abstr. (2008). Abstract 134-1

  • R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophys. Res. Lett. 37, L04201 (2010). doi:10.1029/2009GL041870

    Article  Google Scholar 

  • J.M. Moore, A.D. Howard, Large alluvial fans on Mars. J. Geophys. Res. 110, E04005 (2005). doi:10.1029/2005JE002352

    Article  ADS  Google Scholar 

  • H.J. Moore, B.M. Jakosky, Viking landing sites, remote-sensing observations, and physical properties of martian surface materials. Icarus 81, 164–184 (1989)

    Article  ADS  Google Scholar 

  • J.M. Moore, A.D. Howard, W.D. Dietrich, P.M. Schenk, Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30, E06001 (2003). doi:10.1029/2003GL019002

    Google Scholar 

  • MSL Project, MSL landing site selection user’s guide to engineering constraints. The Mars Science Laboratory Project Document, Jet Propulsion Laboratory, Pasadena, CA, vol. 4.5, 2007, 15 pp.

  • S. Murchie et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007). doi:10.1029/2006JE002682

    Article  ADS  Google Scholar 

  • J.F. Mustard, B.L. Ehlmann, Three distinct habitable environments defined by aqueous alteration traversing the alkaline-acidic transition. Abstract submitted for a New MSL Landing Site to the Landing Site Steering Committee, Aug. 22, 2009, posted at https://marsoweb.nas.nasa.gov/landingsites/

  • J.F. Mustard et al., Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008). doi:10.1038/nature07097

    Article  ADS  Google Scholar 

  • J.F. Mustard, B.L. Ehlmann, S.L. Murchie, F. Poulet, N. Mangold, J.W. Head, J.-P. Bibring, L.H. Roach, Composition, morphology, and stratigraphy of Noachain/Phyllosian crust around the Isidis Basin. J. Geophys. Res. 114, E00D12 (2010). doi:10.1029/2009JE003349

    Article  Google Scholar 

  • G.A. Neumann, J.B. Abshire, O. Aharonson, J.B. Garvin, X. Sun, M.T. Zuber, Mars Orbiter Laser Altimeter pulse width measurements and footprint scale roughness. Geophys. Res. Lett. 30, 1561–1565 (2003)

    Article  ADS  Google Scholar 

  • H.E. Newsom, N.L. Lanza, A.M. Ollila, S.M. Wiseman, T.L. Roush, G.A. Marzo, L.L. Tornabene, C.H. Okubo, M.M. Osterloo, V.E. Hamilton, L.S. Crumpler, Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus 205, 64–72 (2010). doi:10.1016/j.icarus.2009.03.030

    Article  ADS  Google Scholar 

  • E.Z. Noe Dobrea et al., Mineralogy and stratigraphy of phyllossilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J. Geophys. Res. (2010). doi:10.1029/2009JE003351

    Google Scholar 

  • E.Z. Noe Dobrea, J. Michalski, G. Swayze, Aqueous mineralogy and stratigraphy at and around the proposed Mawrth Vallis MSL Landing Site: New insights into the aqueous history of the region, Mars. Mars 6, 32–46 (2011)

    Google Scholar 

  • K.S. Novak, Y. Liu, C.-J. Lee, S. Hendricks, Mars Science Laboratory Rover actuator thermal design, in 40th ICES Conference, Barcelona, Spain, July 2010

    Google Scholar 

  • S.A. Nowicki, P.R. Christensen, Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. 112, E05007 (2007). doi:10.1029/2006JE002798

    Article  ADS  Google Scholar 

  • T. Ojala, M. Pietikainen, Unsupervised texture segmentation using feature distributions. Pattern Recognit. 32, 477–486 (1999)

    Article  Google Scholar 

  • M.M. Osterloo, V.E. Hamilton, J.L. Bandfield, T.D. Glotch, A.M. Baldridge, P.R. Christensen, L.L. Tornabene, F.S. Anderson, Chloride-bearing materials in the southern highlands of Mars. Science 319(5870), 1651–1654 (2008). doi:10.1126/science.1150690

    Article  ADS  Google Scholar 

  • M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride- bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010). doi:10.1029/2010JE003613

    Article  ADS  Google Scholar 

  • F.D. Palluconi, H.H. Kieffer, Thermal inertia mapping of Mars from 60°S to 60°N. Icarus 45, 415–426 (1981)

    Article  ADS  Google Scholar 

  • T.J. Parker, M.P. Golombek, M.W. Powell, Geomorphic/geologic mapping, localization, and traverse planning at the Opportunity landing site, Mars, in 41st Lunar Planet. Sci. (Lunar and Planetary Institute, Houston, 2010). Abstract #2638 (CD-ROM)

    Google Scholar 

  • S.M. Pelkey, B.M. Jakosky, Surficial geologic surveys of Gale Crater and Melas Chasma, Mars: Integration of remote-sensing data. Icarus 160, 228–257 (2002)

    Article  ADS  Google Scholar 

  • S.M. Pelkey, B.M. Jakosky, P.R. Christensen, Surficial properties in Gale Crater, Mars from Mars Odyssey THEMIS data. Icarus 167, 244–270 (2004)

    Article  ADS  Google Scholar 

  • L.K. Pleskot, E.D. Miner, Time variability of Martian bolometric albedo. Icarus 45, 179–201 (1981)

    Article  ADS  Google Scholar 

  • B.D. Pollard, C.W. Chen, The radar terminal descent sensor for the Mars Science Laboratory mission, in Proceedings of the Aerospace Engineering Symposium, Big Sky, MT (2009). doi:10.1109/AERO.2009.4839463

    Google Scholar 

  • M. Pondrelli, A. Baliva, S. Di Lorenzo, L. Marinangeli, A.P. Rossi, Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater. J. Geophys. Res. 110, E04016 (2005). doi:10.1029/2004JE002335

    Article  ADS  Google Scholar 

  • M. Pondrelli, A. Pio Rossi, L. Marinangeli, E. Hauber, A. Baliva, An application of sequence stratigraphy to Mars: The Eberswalde fan delta. GeoActa 1, 237–253 (2008). Special Publication

    Google Scholar 

  • C. Popa, F. Esposito, L. Colangeli, New landing site proposal for Mars Science Laboratory (MSL) in Xanthe Terra, in Lunar Planet. Sci., vol. XLI (Lunar and Planetary Institute, Houston, 2010) Abstract 1807

    Google Scholar 

  • F. Poulet, J.-P. Bibring, J.F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R.E. Arvidson, B. Gondet, C. Gomez (OMEGA Team), Phyllosilicates on Mars and implications for the early Mars history. Nature 438, 623–628 (2005)

    Article  ADS  Google Scholar 

  • F. Poulet, C. Gomez, J.-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, J. Mustard, Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. J. Geophys. Res. 112, E08S02 (2007). doi:10.1029/2006JE002840

    Article  ADS  Google Scholar 

  • F. Poulet, R.E. Arvidson, C. Gomez, R.V. Morris, J.-P. Bibring, Y. Langevin, B. Gondet, J. Griffes, Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation. Icarus 195(1), 106–160 (2008a). doi:10.1016/j.icarus.2007.11.031

    Article  ADS  Google Scholar 

  • F. Poulet, N. Mangold, D. Loizeau, J.-P. Bibring, Y. Langevin, J. Michalski, B. Gondet, Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487(2), L41–L44 (2008b)

    Article  ADS  Google Scholar 

  • R. Prakash et al., Mars Science Laboratory entry, descent, and landing system overview, in IEEE Aerospace Conference (2008). doi:10.1109/AERO.2008.4526283. IEEEAC paper #1531

    Google Scholar 

  • N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007). doi:10.1016/j.icarus.2007.05.013

    Article  ADS  Google Scholar 

  • N.E. Putzig, M.T. Mellon, R.E. Arvidson, K.A. Kretke, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173, 325–341 (2005)

    Article  ADS  Google Scholar 

  • C. Quantin, P. Allemand, N. Mangold, G. Dromart, C. Delacourt, Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. J. Geophys. Res. 110, E12S19 (2005). doi:10.1029/2005JE002440

    Article  ADS  Google Scholar 

  • S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus 151, 228–256 (2001)

    Article  ADS  Google Scholar 

  • M.S. Rice, S. Gupta, J.F. Bell III, N.H. Warner, Influence of fault controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater, Mars. Geophys. Res. Lett. 38, L16203 (2011). doi:10.1029/2011GL048149

    Article  ADS  Google Scholar 

  • S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 (2002). doi:10.1029/2001JE001580

    Article  Google Scholar 

  • D.H. Scott, K.L. Tanaka, Geologic map of the western equatorial region of Mars. U. S. Geological Survey Miscellaneous Investigations Series I-1802-A, scale 1:15,000,000, 1986

  • R.A. Simpson, J.K. Harmon, S.H. Zisk, T.W. Thompson, D.O. Muhleman, Radar determination of Mars surface properties, in MARS, ed. by H.H. Kieffer et al. (University of Arizona Press, Tucson, 1992), pp. 652–685

    Google Scholar 

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    Article  ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars. Geophys. Res. Lett. 25, 4397–4400 (1998)

    Article  ADS  Google Scholar 

  • D.E. Smith et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

    Article  ADS  Google Scholar 

  • S.W. Squyres et al., Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. J. Geophys. Res. 111, E12S12 (2006). doi:10.1029/2006JE002771

    Article  ADS  Google Scholar 

  • A. Steltzner, D. Kipp, A. Chen, D. Burkhart, C. Guernsey, G. Mendeck, R. Mitcheltree, R. Powell, T. Rivellini, M. San Martin, D. Way, Mars Science Laboratory entry descent and landing system, in IEEE Aerospace Conference, Big Sky, MT (2006). IEEAC paper #1497

    Google Scholar 

  • R.E. Summons, J.P. Amend, D. Bish, R. Buick, G.D. Cody, D.J. Des Marais, G. Dromart, J.L. Eigenbrode, A.H. Knoll, D.Y. Sumner, Preservation of Martian organic and environmental records: Final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011). doi:10.1089/ast.2010.0506

    Article  ADS  Google Scholar 

  • B.J. Thomson et al., Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011)

    Article  ADS  Google Scholar 

  • D. Tyler, J.R. Barnes, R.M. Haberle, Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res. 107(E4), 5018 (2002). doi:10.1029/2001JE001618

    Article  Google Scholar 

  • M. Varma, A. Zisserman, A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)

    Google Scholar 

  • A.R. Vasavada et al., Environmental characterization for the Mars Science Laboratory EDL and surface operations. Space Sci. Rev., this issue

  • M. Vincendon, J. Mustard, F. Forget, M. Kreslavsky, A. Spiga, S. Murchie, J.-P. Bibring, Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010). doi:10.1029/2009GL041426

    Article  Google Scholar 

  • D.W. Way, R.W. Powell, A. Chen, A.D. Steltzner, A.M.S. Martin, P.D. Burhart, G.F. Mendeck, Mars Science Laboratory: Entry, descent, and landing system performance, in IEEE Aerospace Conference, Big Sky, MT (2007). IEEAC paper #1467

    Google Scholar 

  • C.V. White, G. Antoun, J. Tippmann, Analysis and testing of the Mars Science Laboratory entry, descent, and landing loads—Part 2—Landing loads phase, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, April 2012

    Google Scholar 

  • S.A. Wilson, A.D. Howard, J.M. Moore, J.A. Grant, Geomorphic and stratigraphic analysis of crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009 (2007). doi:10.1029/2006JE002830

    Article  ADS  Google Scholar 

  • S.M. Wiseman, R.E. Arvidson, F. Poulet, R.V. Morris, S. Murchie, F.P. Seelos, J.C. Andrews-Hanna, CRISM Science Team, Stratigraphic context of phyllosilicate deposits in Sinus Meridiani, Mars, in Lunar Planet. Sci., LPI, Houston, TX, vol. XXXIX (2008). Abstract 7035

    Google Scholar 

  • J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008)

    Article  ADS  Google Scholar 

  • J. Yen, B. Cooper, F. Hartman, S. Maxwell, J. Wright, C. Leger, Physical-based simulation for Mars Exploration Rover tactical sequencing, in Proceedings of the 2005 IEEE Conference on Systems, Man, and Cybernetics, October 2005

    Google Scholar 

  • B. Zhang, Towards a higher level of automation in softcopy photogrammetry: NGATE and LIDAR processing in SOCET SET1. Paper presented at Geocue Corporation 2nd Annual Technical Exchange Conference, Nashville, Tenn., 26–27 September 2006

  • B. Zhang, S. Miller, Adaptive automatic terrain extraction. Proc. SPIE Int. Soc. Opt. Eng. 3072, 27–36 (1997)

    ADS  Google Scholar 

  • B. Zhang, S. Miller, K. DeVenecia, S. Walker, Automatic terrain extraction using multiple image pair and back matching. Paper presented at ASPRS 2006 Annual Conference, Am. Soc. Photogramm. Remote Sens., Reno, Nevada, 1–5 May 2006

Download references

Acknowledgements

Research described in this paper was partially done by the MSL project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was supported by the Mars Data Analysis Program. Derived data products were sponsored by the Critical Data Products program administered by the JPL Mars Exploration Program office. We especially thank members of the Council of Atmospheres and Council of Terrains for work on characterizing MSL landing sites. We thank L. Redmond and N. Warner for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Golombek.

Additional information

R. Hoover now at Ohio University, Athens, OH 45701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golombek, M., Grant, J., Kipp, D. et al. Selection of the Mars Science Laboratory Landing Site. Space Sci Rev 170, 641–737 (2012). https://doi.org/10.1007/s11214-012-9916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9916-y

Keywords

Navigation