Skip to main content
Log in

Cyclotron Resonant Interactions in Cosmic Particle Accelerators

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A review is given for cyclotron resonant interactions in space plasmas. After giving a simple formulation for the test particle approach, illustrative examples for resonant interactions are given. It is shown that for obliquely propagating whistler waves, not only fundamental cyclotron resonance, but also other resonances, such as transit-time resonance, anomalous cyclotron resonance, higher-harmonic cyclotron resonance, and even subharmonic resonance can come into play. A few recent topics of cyclotron resonant interactions, such as electron injection in shocks, cyclotron resonant heating of solar wind heavy ions, and relativistic modifications, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Here we have chosen the electron motion. Of course, we can equally take the ion motion with a suitable modification of the choice of wave modes in the following consideration of resonant interactions. The relativistic effect will be considered in Sects. 5.4 and 5.5.

  2. Note, however, that there still remains self nonlinearity in (3) for the mode #, where \({\mathbf{E}_{w}^{\#}}\) and \({\mathbf{B}_{w}^{\#}}\) are evaluated at the particle position r e (t), which is affected by \({\mathbf{E}_{w}^{\#}}\) and \({\mathbf{B}_{w}^{\#}}\) themselves. This nonlinearity is the origin of subharmonic resonances to be discussed in Sect. 4.5.

  3. From this consideration it is naturally understood why there is no anomalous resonance effect for a parallel propagating whistler wave (Fig. 1): An electron satisfying the n=−1 resonance condition feels the whistler wave left-hand polarized in its own comoving frame and does not exchange energy and momentum with the wave efficiently.

  4. In this and next subsections we consider the resonant interaction of ions and set the sign of ω positive for the left-hand polarized waves.

  5. The authors took the z axis along B 0. The limiting velocity v 0 for the multiple interactions corresponds to the condition tangential to the wave dispersion relation (Fig. 8(c)).

  6. Note the following relation for the Lorentz factor,

    $$\gamma\equiv\bigl\{1-\bigl(v_x^2+v_\perp^2\bigr)/c^2 \bigr\}^{-1/2} =\bigl(1+u_\parallel^2+u_\perp^2\bigr)^{1/2}.$$

References

  • T. Amano, M. Hoshino, A critical Mach number for electron injection in collisionless shocks. Phys. Rev. Lett. 104, 181102 (2010)

    Article  ADS  Google Scholar 

  • D.D. Barbosa, W.S. Kurth, Suprathermal electrons and Bernstein waves in Jupiter’s inner magnetosphere. J. Geophys. Res. 85, 6729 (1980)

    Article  ADS  Google Scholar 

  • N. Brice, Fundamentals of very low frequency emission generation mechanisms. J. Geophys. Res. 69, 4515 (1964)

    Article  ADS  Google Scholar 

  • C. Cattell, J.R. Wygant, K. Goetz et al., Discovery of very large amplitude whistler-mode waves in Earth’s radiation belt. Geophys. Res. Lett. 35, L01105 (2008)

    Article  Google Scholar 

  • L. Chen, Z. Lin, R. White, On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 4713 (2001)

    Article  ADS  Google Scholar 

  • C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett. 35, L17S16 (2008)

    Article  Google Scholar 

  • D.H. Fairfield, Bow shock associated waves observed in the far upstream interplanetary medium. J. Geophys. Res. 74, 3541 (1969)

    Article  ADS  Google Scholar 

  • N. Furuya, Y. Omura, D. Summers, Relativistic turning acceleration of radiation belt electrons by whistler mode chorus. J. Geophys. Res. 113, A04224 (2008)

    Article  ADS  Google Scholar 

  • V.L. Ginzburg, Certain theoretical aspects of radiation due to superluminal motion in a medium. Sov. Phys. Usp. 2, 874 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  • K. Hasselmann, G. Wibberenz, Scattering of charged particles by random electromagnetic fields. Z. Geophys. 34, 353 (1968)

    Google Scholar 

  • D.E. Hall, P.A. Sturrock, Diffusion, scattering, and acceleration of particles by stochastic electromagnetic field. Phys. Fluids 10, 2620 (1967)

    Article  ADS  MATH  Google Scholar 

  • A. Hasegawa, L. Chen, Kinetic processes in plasma-heating by resonant mode conversion of Alfvén wave. Phys. Fluids 19, 1924 (1976)

    Article  ADS  Google Scholar 

  • R.A. Helliwell, Controlled VLF wave injection experiments in the magnetosphere. Space Sci. Rev. 15, 781 (1974)

    Article  ADS  Google Scholar 

  • M. Hillas, The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425 (1984)

    Article  ADS  Google Scholar 

  • J.V. Hollweg, P.A. Isenberg, Generation of fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147 (2002)

    Article  Google Scholar 

  • M. Hoshino, T. Terasawa, Numerical study of the upstream wave excitation mechanism. 1. Nonlinear phase bunching of beam ions. J. Geophys. Res. 90, 57 (1985)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, B.J. Vasquez, Preferential perpendicular heating of coronal hole minor ions by the Fermi mechanism. Astrophys. J. 668, 546 (2007)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, B.J. Vasquez, Preferential acceleration and perpendicular heating of minor ions in a collisionless coronal hole. Astrophys. J. 696, 591 (2009)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, Propagation of cosmic rays in the solar wind. Rev. Geophys. Space Sci. 9, 27 (1971)

    Article  ADS  Google Scholar 

  • V.I. Karpman, Nonlinear effects in the ELF waves propagating along the magnetic field in the magnetosphere. Space Sci. Rev. 16, 361 (1974)

    Article  ADS  Google Scholar 

  • C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 2377 (1966)

    Article  ADS  Google Scholar 

  • C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966)

    Article  ADS  Google Scholar 

  • Y. Kuramitsu, V. Krasnoselskikh, Gyroresonant surfing acceleration. Phys. Rev. Lett. 94, 031102 (2005a)

    Article  ADS  Google Scholar 

  • Y. Kuramitsu, V. Krasnoselskikh, Acceleration of charged particles by gyroresonant surfing at quasi-parallel shocks. Astron. Astrophys. 438, 391 (2005b)

    Article  ADS  Google Scholar 

  • R.M. Kulsrud, A. Ferrari, The relativistic quasilinear theory of particle acceleration by hydromagnetic turbulence. Astrophys. Space Sci. 12, 302 (1971)

    Article  ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, H.K. Wong, Dissipation range dynamics: kinetic Alfvén waves and the importance of β e . J. Geophys. Res. 104, 22331 (1999)

    Article  ADS  Google Scholar 

  • M.A. Lee, I. Lerche, Waves and irregularities in the solar wind. Rev. Geophys. Space Sci. 12, 671 (1974)

    Article  ADS  Google Scholar 

  • A. Levinson, Electron injection in collisionless shocks. Astrophys. J. 401, 73 (1992)

    Article  ADS  Google Scholar 

  • Q. Lu, L. Chen, Ion heating by a spectrum of obliquely propagating low-frequency Alfvén waves. Astrophys. J. 704, 743 (2009)

    Article  ADS  Google Scholar 

  • R.L. Lysak, W. Lotko, On the kinetic dispersion relation for shear Alfvén waves. J. Geophys. Res. 101, 5085 (1996)

    Article  ADS  Google Scholar 

  • S. Matsukiyo, T. Hada, Relativistic particle acceleration in developing Alfvén turbulence. Astrophys. J. 692, 1004 (2009)

    Article  ADS  Google Scholar 

  • H. Matsumoto, Nonlinear Whistler-mode interaction and triggered emissions in the magnetosphere, in Wave Instabilities in Space Plasmas, ed. by P.J. Palmadesso, K. Papadopoulos (Reidel, Dordrecht, 1979)

    Google Scholar 

  • M. Oka, T. Terasawa, Y. Seki, M. Fujimoto, Y. Kasaba, H. Kojima, I. Shinohara, H. Matsui, H. Matsumoto, Y. Saito, T. Mukai, Whistler critical Mach number and electron acceleration at the bow shock: geotail observation. Geophys. Res. Lett. 33, L24104 (2006)

    Article  ADS  Google Scholar 

  • Y. Omura, N. Furuya, D. Summers, Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J. Geophys. Res. 112, A06236 (2007)

    Article  ADS  Google Scholar 

  • S. O’Sullivan, B. Reville, A.M. Taylor, Stochastic particle acceleration in the lobes of giant radio galaxies. Mon. Not. R. Astron. Soc. 400, 248 (2009)

    Article  ADS  Google Scholar 

  • P. Palmadesso, G. Schmidt, Collisionless damping of a large amplitude whistler wave. Phys. Fluids 14, 1411 (1971)

    Article  ADS  Google Scholar 

  • V. Petrosian, S. Liu, Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. Astrophys. J. 610, 550 (2004)

    Article  ADS  Google Scholar 

  • R. Schlickeiser, Cosmic-ray transport and acceleration. I. Derivation of the kinetic equation and application to cosmic rays in static cold media. Astrophys. J. 336, 243 (1989a)

    Article  ADS  Google Scholar 

  • R. Schlickeiser, Cosmic-ray transport and acceleration. II. Cosmic rays in moving cold media with application to diffusive shock wave acceleration. Astrophys. J. 336, 264 (1989b)

    Article  ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002)

    Google Scholar 

  • R. Schlickeiser, J.A. Miller, Quasi-linear theory of cosmic ray transport and acceleration: the role of oblique magnetohydrodynamic waves and transit-time damping. Astrophys. J. 492, 352 (1998)

    Article  ADS  Google Scholar 

  • J.P.M. Schmitt, Nonlinear theory of rf heating at cyclotron harmonics. Phys. Fluids 19, 245 (1976)

    Article  ADS  Google Scholar 

  • A. Shalchi, Nonlinear Cosmic Ray Diffusion Theories (Springer, Berlin, 2009)

    Book  Google Scholar 

  • J. Skilling, Cosmic ray streaming. I. Effect of Alfvén waves on particles. Mon. Not. R. Astron. Soc. 172, 557 (1975)

    ADS  Google Scholar 

  • Y.N. Smirnov, D.A. Frank-Kamenetskii, Nonlinearity and parametric resonance in a plasma. Sov. Phys. JETP 26, 627 (1968)

    ADS  Google Scholar 

  • T.H. Stix, Waves in Plasmas (Springer, New York, 1992)

    Google Scholar 

  • X. Tao, J. Bortnik, Nonlinear interactions between relativistic radiation belt electrons and oblique whistler mode waves. Nonlinear Process. Geophys. 17, 599 (2010)

    Article  ADS  Google Scholar 

  • T. Terasawa, M. Nambu, Ion heating and acceleration by magnetosonic waves via cyclotron subharmonic resonance. Geophys. Res. Lett. 16, 357 (1989)

    Article  ADS  Google Scholar 

  • J.J.P. Viratanen, R. Vainio, Stochastic acceleration in relativistic parallel shocks. Astrophys. J. 621, 313 (2005)

    Article  ADS  Google Scholar 

  • Y. Watanabe, T. Terasawa, On the excitation mechanism of the low-frequency upstream waves. J. Geophys. Res. 89, 6623 (1984)

    Article  ADS  Google Scholar 

  • R. White, L. Chen, Z. Lin, Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 1890 (2002)

    Article  ADS  Google Scholar 

  • D. Winske, M.M. Leroy, Diffuse ions produced by electromagnetic ion beam instabilities. J. Geophys. Res. 89, 2673 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank for valuable discussions and comments to T. Hada, M. Scholer, M.A. Lee, and Y. Ohira. The works by T.T. and S.M. get partial supports from the grants-in-aids 21540259 and 22740323 from Japan Society for the Promotion of Science, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Terasawa.

Appendices

Appendix A

For the j species (j=i or e), the plasma frequency is defined as \(\omega_{pj} = \sqrt{4\pi n_{0} e^{2}/m_{j}}\), and the cyclotron frequency as Ω cj =eB 0/m j c. The Alfvén velocity V A is defined as \(B_{0}/\sqrt{4\pi n_{0} (m_{i}+m_{e})}\), which is chosen to be 10−4 c in the test particle calculation. The ion mass m i is taken 1836 times m e .

The wave electric field E w ∝expi(krωt) should satisfy the following matrix relation (see, e.g., Chap. 2 of Stix 1992),

$${\tilde{M}} {\mathbf{E}_w}=0, $$
(17)

with a matrix \({\tilde{M}}\) given as

$${\tilde{M}} \equiv \left \{ \begin{array}{c@{\quad}c@{\quad}c}P-N^2 \sin^2 \theta& 0 & N^2 \sin\theta\cos\theta\\0 & S-N^2 & -iD \\N^2 \sin\theta\cos\theta& iD & S-N^2 \cos^2 \theta \end{array} \right \},$$
(18)

where Nkc/ω is a refractive index, and P, S, and D are defined as

(19)

Note that the condition \(\det {\tilde{M}} =0\) gives the wave dispersion relation.

From the first and second column of the matrix equation (17), we have

(20)

Now switching from the complex formulation to the real formulation, we write the xyz components of the electric field, (E w,x , E w,y , E w,z ), as

$$(E_{w,x}, E_{w,y}, E_{w,z})= (g_x \cos \varphi, g_y \sin\varphi, g_z \cos\varphi),$$
(21)

where the relative amplitudes of (g x , g y , g z ) are determined by (20), and φ is the phase angle,

$$\varphi\equiv{\mathbf{k}} \cdot{\mathbf{r}} - \omega t + \varphi_0,$$
(22)

where φ 0 is the initial phase angle, respectively. From the Faraday’s law, we have

$${\mathbf{B}_w} = N (\cos\theta, 0, \sin\theta) \times{\mathbf{E}_w},$$
(23)

from which the xyz components of the magnetic field, (B w,x , B w,y , B w,z ), are obtained as

(24)

Appendix B

In a finite amplitude monochromatic electromagnetic wave propagating parallel to the background magnetic field B 0 charged particles can be phase-space trapped around the resonant velocity (see e.g., Palmadesso and Schmidt 1971; Helliwell 1974; Schmitt 1976; Karpman 1974; Matsumoto 1979; Hoshino and Terasawa 1985; Kuramitsu and Krasnoselskikh 2005b). Here we follow the description in a recent article by Kuramitsu and Krasnoselskikh (2005b). Firstly, the gyrophase angle for an ion is defined as ϕ p ≡tan−1(v z /v y ), the wave phase angle as ϕ w kxωt+α w (α w : the initial value), and their difference as ψϕ w ϕ p (Fig. 11). Next, with the velocity of ions in the wave rest frame (u x ,u )=(v x ω/k,v ) the cosine of the pitch angle is defined as μu x /|u|, where \(|u| = (u_{x}^{2} + u_{\perp}^{2})^{1/2}\) is the constant of motion (namely, the ion energy is conserved in the wave rest frame). The second integral of the ion motion χ can be written as,

$$\chi= \frac{\kappa}{2} \biggl( \mu+ \frac{1}{\kappa} \biggr)^2 +b \bigl(1-\mu^2\bigr)^{1/2} \cos\psi,$$
(25)

where κ=ku/Ω ci , and b the wave amplitude normalized by |B 0|. With χ, the equation of motion is simplified as

$${\dot{\mu}} = -\frac{\partial\chi}{\partial\psi},\qquad {\dot{\psi}} = \frac{\partial\chi}{\partial\mu}.$$
(26)

Figure 12 shows the ion trajectories in the μψ phase space with κ=3 and b=0.01, 0.1, 1, 10. When the wave amplitude is small ((a): b=0.01), ions are trapped around (μ,ψ)=(−1/κ,π), which is due to the linear cyclotron resonant interaction. As the wave amplitude b becomes larger ((c) and (d)), the trapping region also becomes larger and a new trapping region is born in a location far from the original point (−1/κ,π).

Fig. 11
figure 11

Figure from Kuramitsu and Krasnoselskikh (2005b) showing the definition of angles, ϕ p , ϕ w , and ψ

Fig. 12
figure 12

Figure from Kuramitsu and Krasnoselskikh (2005b) showing particle trajectories in the μψ phase space with κ=3 when (ab=0.01, (bb=0.1, (cb=1, and (db=10. One curve corresponds to one constant of motion χ

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasawa, T., Matsukiyo, S. Cyclotron Resonant Interactions in Cosmic Particle Accelerators. Space Sci Rev 173, 623–640 (2012). https://doi.org/10.1007/s11214-012-9878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9878-0

Keywords

Navigation