Skip to main content
Log in

Magnetic Fields in Cosmic Particle Acceleration Sources

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. In particular, we discuss a number of cosmic-ray (CR) driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. The finite size twinkling, intermittent structures—dots, clumps, and filaments—are most apparent in the cut-off region of the synchrotron spectrum. Even though these X-ray synchrotron structures result from turbulent magnetic fields, they could still be highly polarized providing an important diagnostic of the spectrum of the turbulence. We discuss both the thermal and non-thermal observational consequences of magnetic field amplification in supernova remnants and radio-galaxies. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.A. Abdo, M. Ackermann, M. Ajello, L. Baldini et al., Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys. J. 712, 459–468 (2010). arXiv:1002.2198

    ADS  Google Scholar 

  • T. Abel, G.L. Bryan, M.L. Norman, The formation of the first star in the universe. Science 295, 93–98 (2002). arXiv:astro-ph/0112088

    ADS  Google Scholar 

  • A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994)

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, B. Behera et al., Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4–0.1) field. Astron. Astrophys. 481, 401–410 (2008). arXiv:0801.3555

    ADS  Google Scholar 

  • J. Albert, E. Aliu, H. Anderhub, P. Antoranz et al., Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys. J. 664, L87–L90 (2007). arXiv:0705.3119

    ADS  Google Scholar 

  • E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. Lett. 392, 1591–1600 (2009). arXiv:0806.1223

    ADS  Google Scholar 

  • A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys. J. 621, 793–802 (2005). arXiv:astro-ph/0411326

    ADS  Google Scholar 

  • A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., Small-scale structure of non-thermal X-rays in historical SNRs. Adv. Space Res. 37, 1439–1442 (2006)

    ADS  Google Scholar 

  • K. Bamert, R. Kallenbach, J.A. le Roux, M. Hilchenbach et al., Evidence for Iroshnikov-Kraichnan-type turbulence in the solar wind upstream of interplanetary traveling shocks. Astrophys. J. 675, L45–L48 (2008)

    ADS  Google Scholar 

  • K. Bamert, R. Kallenbach, N.F. Ness, C.W. Smith et al., Hydromagnetic wave excitation upstream of an interplanetary traveling shock. Astrophys. J. 601, L99–L102 (2004)

    ADS  Google Scholar 

  • R. Bandiera, O. Petruk, A statistical approach to radio emission from shell-type SNRs. I. Basic ideas, techniques, and first results. Astron. Astrophys. 509, A34 (2010). arXiv:0911.0829

    ADS  Google Scholar 

  • R. Beck, Galactic and extragalactic magnetic fields, in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger. American Institute of Physics Conference Series, vol. 1085 (2008), pp. 83–96. arXiv:0810.2923

    Google Scholar 

  • R. Beck, A. Brandenburg, D. Moss, A. Shukurov et al., Galactic magnetism: recent developments and perspectives. Annu. Rev. Astron. Astrophys. 34, 155–206 (1996)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    ADS  Google Scholar 

  • A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. Lett. 358, 181–187 (2005)

    ADS  Google Scholar 

  • A. Beresnyak, T.W. Jones, A. Lazarian, Turbulence-induced magnetic fields and structure of cosmic ray modified shocks. Astrophys. J. 707, 1541–1549 (2009). arXiv:0908.2806

    ADS  Google Scholar 

  • V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg et al., Astrophysics of cosmic rays (1990)

  • M.L. Bernet, F. Miniati, S.J. Lilly, P.P. Kronberg et al., Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302–304 (2008). arXiv:0807.3347

    ADS  Google Scholar 

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1 (1987)

    ADS  Google Scholar 

  • R. Blandford, S. Funk, The magnetic bootstrap, in The First GLAST Symposium, ed. by S. Ritz, P. Michelson, C.A. Meegan. American Institute of Physics Conference Series, vol. 921 (2007), pp. 62–64

    Google Scholar 

  • A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005). arXiv:astro-ph/0405052

    MathSciNet  ADS  Google Scholar 

  • Y.M. Butt, T.A. Porter, B. Katz, E. Waxman, X-ray hotspot flares and implications for cosmic ray acceleration and magnetic field amplification in supernova remnants. Mon. Not. R. Astron. Soc. Lett. 386, L20–L22 (2008). arXiv:0801.4954

    ADS  Google Scholar 

  • A.M. Bykov, R.A. Chevalier, D.C. Ellison et al., Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538, 203–216 (2000). arXiv:astro-ph/0003235

    ADS  Google Scholar 

  • A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008a). arXiv:0801.0995

    ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. Lett. 410, 39–52 (2011). arXiv:1010.0408

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36, 1020–1052 (1993)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Generation of magnetic fluctuations near a shock front in a partially ionized medium. Astron. Lett. 31, 748–754 (2005)

    ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. Lett. 399, 1119–1125 (2009). arXiv:0907.2521

    ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, D.C. Ellison, Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys. J. 689, L133–L136 (2008b). arXiv:0811.2498

    ADS  Google Scholar 

  • G. Cassam-Chenaï, J.P. Hughes, J. Ballet, A. Decourchelle, The blast wave of Tycho’s supernova remnant. Astrophys. J. 665, 315–340 (2007). arXiv:astro-ph/0703239

    ADS  Google Scholar 

  • G. Cassam-Chenaï, J.P. Hughes, E.M. Reynoso, C. Badenes et al., Morphological evidence for Azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys. J. 680, 1180–1197 (2008)

    ADS  Google Scholar 

  • D. Castro, P. Slane, Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys. J. 717, 372–378 (2010). arXiv:1002.2738

    ADS  Google Scholar 

  • S.V. Chalov, Instability of the structure of strong oblique MHD cosmic-ray shocks. Astrophys. Space Sci. 148, 175–187 (1988)

    ADS  MATH  Google Scholar 

  • R.A. Chevalier, Magnetic field amplification in interstellar collisionless shock waves. Nature 266, 701 (1977)

    ADS  Google Scholar 

  • K.T. Chyzy, Magnetic fields in dwarfs versus early-type galaxies. Highlights Astron. 15, 454–455 (2010)

    ADS  Google Scholar 

  • E. Costa, R. Bellazzini, G. Tagliaferri, G. Matt et al. POLARIX: a pathfinder mission of X-ray polarimetry. Exp. Astron. 9 (2010)

  • J.H. Croston, R.P. Kraft, M.J. Hardcastle, M. Birkinshaw et al., High-energy particle acceleration at the radio-lobe shock of Centaurus A. Mon. Not. R. Astron. Soc. Lett. 395, 1999–2012 (2009). arXiv:0901.1346

    ADS  Google Scholar 

  • A. Crusius, R. Schlickeiser, Synchrotron radiation in random magnetic fields. Astron. Astrophys. 164, L16–L18 (1986)

    ADS  Google Scholar 

  • E.A. Dorfi, L.O. Drury, A cosmic ray driven instability, in International cosmic ray conference, ed. by F.C. Jones. International Cosmic Ray Conference, vol. 3 (1985), pp. 121–123

    Google Scholar 

  • L.O. Drury, S.A.E.G. Falle, On the stability of shocks modified by particle acceleration. Mon. Not. R. Astron. Soc. Lett. 223, 353 (1986)

    ADS  MATH  Google Scholar 

  • Y. Dubois, R. Teyssier, Magnetised winds in dwarf galaxies. Astron. Astrophys. 523, A72 (2010). arXiv:0908.3862

    ADS  Google Scholar 

  • D.C. Ellison, M.G. Baring, F.C. Jones, Nonlinear particle acceleration in oblique shocks. Astrophys. J. 473, 1029 (1996). arXiv:astro-ph/9609182

    ADS  Google Scholar 

  • D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990)

    ADS  Google Scholar 

  • D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932

    ADS  Google Scholar 

  • K. Ferriere, Effect of the explosion of supernovae and superbubbles on the Galactic dynamo. Astrophys. J. 391, 188–198 (1992)

    ADS  Google Scholar 

  • B. Fryxell, C.C. Kuranz, R.P. Drake, M.J. Grosskopf et al., The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities. High Energy Density Phys. 6, 162–165 (2010)

    ADS  Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii, The Origin of Cosmic Rays (Macmillan, New York, 1964)

    Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii, Cosmic Magnetobremsstrahlung (synchrotron Radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965)

    ADS  Google Scholar 

  • H. Hanayama, K. Takahashi, K. Tomisaka, Generation of seed magnetic fields in primordial supernova remnants. arXiv:0912.2686 (2009)

  • L. Harvey-Smith, B.M. Gaensler, R. Kothes, R. Townsend et al., Faraday rotation of the supernova remnant G296.5+10.0: evidence for a magnetized progenitor wind. Astrophys. J. 712, 1157–1165 (2010). arXiv:1001.3462

    ADS  Google Scholar 

  • C. Heiles, Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483–491 (1990)

    ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G. Bassa, A. Bamba et al., Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). arXiv:0906.4553

    ADS  Google Scholar 

  • T.S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175 005 (2008). arXiv:0807.3713

    Google Scholar 

  • G.G. Howes, Inertial range turbulence in kinetic plasmas. Phys. Plasmas 15(5), 055 904 (2008). arXiv:0711.4358

    Google Scholar 

  • F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991)

    ADS  Google Scholar 

  • B. Jun, M.L. Norman, On the origin of radial magnetic fields in Young supernova remnants. Astrophys. J. 472, 245 (1996). arXiv:astro-ph/9606096

    ADS  Google Scholar 

  • T.R. Kallman, J.H. Swank, G.E.M.S. Team, The gravity and extreme magnetism small explorer (GEMS). Bull. Am. Astron. Soc. 41, 737 (2010).

    ADS  Google Scholar 

  • T.N. Kato, H. Takabe, Nonrelativistic collisionless shocks in weakly magnetized electron-ion plasmas: two-dimensional particle-in-cell simulation of perpendicular shock. Astrophys. J. 721, 828–842 (2010). arXiv:1008.0265

    ADS  Google Scholar 

  • R.M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, 2005)

    Google Scholar 

  • R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71(4), 046 901 (2008). arXiv:0707.2783

    Google Scholar 

  • Q. Luo, D. Melrose, Saturated magnetic field amplification at supernova shocks. Mon. Not. R. Astron. Soc. 397, 1402–1409 (2009). arXiv:0904.1038

    ADS  Google Scholar 

  • M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

    ADS  Google Scholar 

  • M.A. Malkov, P.H. Diamond, Nonlinear dynamics of acoustic instability in a cosmic ray shock precursor and its impact on particle acceleration. Astrophys. J. 692, 1571–1581 (2009)

    ADS  Google Scholar 

  • M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, On the structure and scale of cosmic ray modified shocks. arXiv:1007.3042 (2010)

  • A. Marcowith, F. Casse, Postshock turbulence and diffusive shock acceleration in young supernova remnants. Astron. Astrophys. 515, A90 (2010). arXiv:1001.2111

    ADS  Google Scholar 

  • A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006). arXiv:astro-ph/0603462

    ADS  MATH  Google Scholar 

  • W.H. Matthaeus, S. Ghosh, S. Oughton, D.A. Roberts, Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 7619–7630 (1996)

    ADS  Google Scholar 

  • D.K. Milne, Polarization and magnetic fields in supernova remnants, in Galactic and Intergalactic Magnetic Fields, ed. by R. Beck, R. Wielebinski, P.P. Kronberg. IAU Symposium, vol. 140 (1990), pp. 67–72

    Google Scholar 

  • F. Miniati, A.R. Bell, Resistive magnetic field generation at cosmic dawn. arXiv:1001.2011 (2010)

  • Y. Ohira, T. Terasawa, F. Takahara, Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks. Astrophys. J. 703, L59–L62 (2009). arXiv:0908.3369

    ADS  Google Scholar 

  • D.J. Patnaude, RA Fesen, Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia a supernova remnant. Astrophys. J. 697, 535–543 (2009). arXiv:0808.0692

    ADS  Google Scholar 

  • G. Pelletier, M. Lemoine, A. Marcowith, Turbulence and particle acceleration in collisionless supernovae remnant shocks. I. Anisotropic spectra solutions. Astron. Astrophys. 453, 181–191 (2006). arXiv:astro-ph/0603461

    ADS  MATH  Google Scholar 

  • O. Petruk, G. Dubner, G. Castelletti et al., Aspect angle for interstellar magnetic field in SN 1006. Mon. Not. R. Astron. Soc. 393, 1034–1040 (2009). arXiv:0811.2319

    ADS  Google Scholar 

  • J.J. Podesta, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). arXiv:0901.4940

    ADS  Google Scholar 

  • M. Pohl, H. Yan, A. Lazarian, Magnetically limited X-ray filaments in young supernova remnants. Astrophys. J. 626, L101–L104 (2005)

    ADS  Google Scholar 

  • V. Ptuskin, V. Zirakashvili, E. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034

    ADS  Google Scholar 

  • E. Quataert, A. Gruzinov, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248–255 (1999). arXiv:astro-ph/9803112

    ADS  Google Scholar 

  • M.J. Rees, Origin of cosmic magnetic fields. Astron. Nachr. 327, 395 (2006)

    ADS  MATH  Google Scholar 

  • B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, A cosmic ray current-driven instability in partially ionised media. Astron. Astrophys. 475, 435–439 (2007). arXiv:0707.3743

    ADS  MATH  Google Scholar 

  • S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

    ADS  Google Scholar 

  • M.A. Riquelme, A. Spitkovsky, Nonlinear study of bell’s cosmic ray current-driven instability. Astrophys. J. 694, 626–642 (2009). arXiv:0810.4565

    ADS  Google Scholar 

  • M.A. Riquelme, A. Spitkovsky, Magnetic amplification by magnetized cosmic rays in supernova remnant shocks. Astrophys. J. 717, 1054–1066 (2010). arXiv:0912.4990

    ADS  Google Scholar 

  • A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic Fields of Galaxies, Astrophysics and Space Science Library, vol. 133 (Springer, Berlin, 1988)

    Google Scholar 

  • D. Ryu, H. Kang, J. Cho, S. Das, Turbulence and magnetic fields in the large-scale structure of the universe. Science 320, 909 (2008). arXiv:0805.2466

    ADS  Google Scholar 

  • S. Samui, K. Subramanian, R. Srianand, Cosmic ray driven outflows from high-redshift galaxies. Mon. Not. R. Astron. Soc. 402, 2778–2791 (2010). arXiv:0909.3854

    ADS  Google Scholar 

  • D.R.G. Schleicher, R. Banerjee, S. Sur, T.G. Arshakian et al., Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit. Astron. Astrophys. 522, A115 (2010). arXiv:1003.1135

    ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002)

    Google Scholar 

  • K.M. Schure, J. Vink, A. Achterberg, R. Keppens, Evolution of magnetic fields in supernova remnants, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 36 (2009), p. 350. arXiv:0810.5150

    Google Scholar 

  • H. Siejkowski, M. Soida, K. Otmianowska-Mazur, M. Hanasz et al., Cosmic-ray driven dynamo in the interstellar medium of irregular galaxies. Astron. Astrophys. 510, A97 (2010). arXiv:0909.0926

    ADS  Google Scholar 

  • J.M. Stone, T. Gardiner, The magnetic Rayleigh-Taylor instability in three dimensions. Astrophys. J. 671, 1726–1735 (2007). arXiv:0709.0452

    ADS  Google Scholar 

  • W. Stroman, M. Pohl, Radio polarimetry signatures of strong magnetic turbulence in supernova remnants. arXiv:0902.1701 (2009)

  • I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (1985)

    Google Scholar 

  • R.A. Treumann, W. Baumjohann, Advanced Space Plasma Physics (1997)

    MATH  Google Scholar 

  • Y. Uchiyama, F.A. Aharonian, T. Tanaka et al., Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007)

    ADS  Google Scholar 

  • Y. Uchiyama, R. Blandford, S. Funk, H. Tajima et al., Gamma-ray emission from crushed clouds in supernova remnants. arXiv:1008.1840 (2010)

  • J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants, in AIP Conference Series, vol. 1085. ed. by F.A. Aharonian et al. (2008), p. 169

    Google Scholar 

  • J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003). arXiv:astro-ph/0210669

    ADS  Google Scholar 

  • A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). arXiv:astro-ph/0606433

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). arXiv:0807.1321

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. Astrophys. J. 703, L29–L32 (2009). arXiv:0908.2602

    ADS  Google Scholar 

  • D.G. Wentzel, Cosmic-ray propagation in the Galaxy—Collective effects. Annu. Rev. Astron. Astrophys. 12, 71–96 (1974)

    ADS  Google Scholar 

  • K.C. Westfold, The polarization of synchrotron radiation. Astrophys. J. 130, 241 (1959)

    MathSciNet  ADS  Google Scholar 

  • L.M. Widrow, Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–823 (2002). arXiv:astro-ph/0207240

    ADS  Google Scholar 

  • A.M. Wolfe, R.A. Jorgenson, T. Robishaw, C. Heiles et al., An 84-μG magnetic field in a galaxy at redshift z=0.692. Nature 455, 638–640 (2008). arXiv:0811.2408

    ADS  Google Scholar 

  • H. Xu, B.W. O’Shea, D.C. Collins, M.L. Norman et al., The Biermann battery in cosmological MHD simulations of population III star formation. Astrophys. J. 688, L57–L60 (2008). arXiv:0807.2647

    ADS  Google Scholar 

  • G.P. Zank, W.I. Axford, J.F. McKenzie, Instabilities in energetic particle modified shocks. Astron. Astrophys. 233, 275–284 (1990)

    ADS  MATH  Google Scholar 

  • Y.B. Zel’dovich, S.A. Molchanov, A.A. Ruzmaikin, D.D. Sokoloff, Intermittency in random media. Sov. Phys. Usp. 30, 353–369 (1987)

    ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488

    ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. Astrophys. J. 678, 255–261 (2008). arXiv:0801.4486

    ADS  Google Scholar 

  • E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003). arXiv:astro-ph/0212559

    ADS  Google Scholar 

  • E.G. Zweibel, J.E. Everett, Environments for magnetic field amplification by cosmic rays. Astrophys. J. 709, 1412–1419 (2010). arXiv:0912.3511

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei M. Bykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.M., Ellison, D.C. & Renaud, M. Magnetic Fields in Cosmic Particle Acceleration Sources. Space Sci Rev 166, 71–95 (2012). https://doi.org/10.1007/s11214-011-9761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9761-4

Keywords

Navigation