Skip to main content
Log in

Interplanetary Origin of Intense, Superintense and Extreme Geomagnetic Storms

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present a review on the interplanetary causes of intense geomagnetic storms (Dst≤−100 nT), that occurred during solar cycle 23 (1997–2005). It was reported that the most common interplanetary structures leading to the development of intense storms were: magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions at the leading fronts of high speed streams. However, the relative importance of each of those driving structures has been shown to vary with the solar cycle phase. Superintense storms (Dst≤−250 nT) have been also studied in more detail for solar cycle 23, confirming initial studies done about their main interplanetary causes. The storms are associated with magnetic clouds and sheath fields following interplanetary shocks, although they frequently involve consecutive and complex ICME structures. Concerning extreme storms (Dst≤−400 nT), due to the poor statistics of their occurrence during the space era, only some indications about their main interplanetary causes are known. For the most extreme events, we review the Carrington event and also discuss the distribution of historical and space era extreme events in the context of the sunspot and Gleissberg solar activity cycles, highlighting a discussion about the eventual occurrence of more Carrington-type storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. Alex, S. Mukherjee, G.S. Lakhina, Geomagnetic signatures during the intense geomagnetic storms of October 29 and November 20, 2003. J. Atmos. Sol.-Terr. Phys. 68, 769 (2006)

    Article  ADS  Google Scholar 

  • M.V. Alves, E. Echer, W.D. Gonzalez, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, 1–10 (2006). doi:10.1029/2005JA011379

    Article  Google Scholar 

  • A. Balogh, V. Bothmer, N.U. Crooker, R.J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J.A. Linker, E. Lucek, G. Mann, E. Marsch, A. Posner, I.G. Richardson, J. Schmidt, M. Scholer, Y.M. Wang, R.F. Wimmer-Schweingruber, M.R. Aellig, P. Bochsler, S. Hefti, Z. Mikic, The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev. 89(1–2), 142–178 (1999). doi:10.1023/A:1005245306874

    ADS  Google Scholar 

  • L.F. Burlaga, K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92(A6), 5725–5734 (1987)

    Article  ADS  Google Scholar 

  • R.C. Carrington, Description of a singular appearance seen in the Sun on September. Mon. Not. R. Astron. Soc. XX(13), 13–15 (1859)

    ADS  Google Scholar 

  • S. Chapman, J. Bartels, Geomagnetism (Oxford University Press, London, 1940)

    Google Scholar 

  • C. Cid, E. Saiz, Y. Cerrato, Comment on ‘Interplanetary conditions leading to superintense geomagnetic storms (Dst≤−250 nT) during solar cycle 23’ by E. Echer et al. Geophys. Res. Lett. 35, 1–3 (2008). L21107, doi:10.1029/2008GL034731

    Article  Google Scholar 

  • C.R. Clauer, G. Siscoe, The great historical geomagnetic storm of 1859: a modern look. Adv. Space Res. 38, 117–118 (2009). Especial issue

    Article  Google Scholar 

  • E.W. Cliver, J. Feynmann, H.B. Garret, An estimate of the maximum speed of the solar wind, 1938–1989. J. Geophys. Res. 95, 17103 (1990)

    Article  ADS  Google Scholar 

  • A.L. Clúa de Gonzalez, V.M. Silbergleit, W.D. Gonzalez, B.T. Tsurutani, Annual variation of geomagnetic activity. J. Atmos. Sol.-Terr. Phys. 63, 367–374 (2001)

    Article  ADS  Google Scholar 

  • A. Dal Lago, L.E.A. Vieira, E. Echer, W.D. Gonzalez, A.L. Clúa de Gonzalez, F.L. Guarnieri, L. Balmaceda, J.C. Santos, M.R. da Silva, A. De Lucas, N.J. Schuch, Great geomagnetic storms in the rise and maximum of solar cycle 23. Braz. J. Phys. 34, 1542 (2004)

    Article  Google Scholar 

  • E. Echer, W.D. Gonzalez, Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett. 31(1–4), L09808 (2004). doi:10.1029/2003GL019199

    Article  Google Scholar 

  • E. Echer, W.D. Gonzalez, Ring current asymmetry during superintense magnetic storms, in Proceedings of the 10th International Congress, Braz (Geophys. Soc. Rio de Janeiro, Rio de Janeiro, 2007)

    Google Scholar 

  • E. Echer, V.M. Alves, W.D. Gonzalez, A statistical study of magnetic cloud parameters and geoeffectiveness. J. Atmos. Sol.-Terr. Phys. 67, 839–852 (2005)

    Article  ADS  Google Scholar 

  • E. Echer, W.D. Gonzalez, B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (Dst≤−250 nT) during solar cycle 23 (1996–2006). Geophys. Res. Lett. 35(1–5), L06S03 (2008a). doi:10.1029/2007GL031755

    Article  Google Scholar 

  • E. Echer, W.D. Gonzalez, B.T. Tsurutani, A.L. Clúa de Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res. 113(1–6), A05221 (2008b). doi:10.1029/2007JA012744

    Article  Google Scholar 

  • W. Ellis, The relation between magnetic disturbance and sunspot frequency. Mon. Not. R. Astron. Soc. 60, 142 (1900)

    ADS  Google Scholar 

  • W.D. Gonzalez, F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res. 79(28), 4186–4194 (1974)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst≤−100 nT ). Planet. Space Sci. 35, 1101–1109 (1987)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, A.L. Clúa de Gonzalez, E.J. Smith, F. Tang, S.I. Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms. J. Geophys. Res. 94, 8835 (1989)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, A.L. Clúa de Gonzalez, B.T. Tsurutani, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181–187 (1990a)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, L. Lee, Comment on the polarity of magnetic clouds. J. Geophys. Res. 95, 17267 (1990b)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, V.M. Vasyliunas, What is a geomagnetic storm? J. Geophys. Res. 99(A4), 5771–5792 (1994)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, A.L. Clúa de Gonzalez, A. Dal Lago, B.T. Tsurutani, J.K. Arballo, G.S. Lakhina, B. Buti, C.M. Ho, S.T. Wu, Magnetic cloud field intensities and solar wind velocities. Geophys. Res. Lett. 25, 963 (1998)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, A.L. Clúa de Gonzalez, Interplanetary origin of magnetic storms. Space Sci. Rev. 88, 529–562 (1999)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, R.P. Lepping, R. Schwenn, Interplanetary phenomena associated with very intense geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 64, 173–181 (2002)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, A.L. Clúa de Gonzalez, L.E.A. Vieira, B.T. Tsurutani, Prediction of peak Dst from CME/magnetic cloud-speed observations. J. Atmos. Sol.-Terr. Phys. 66, 161 (2004)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, E. Echer, A.L. Clúa de Conzalez, B.T. Tsurutani, Interplanetary origin of intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23. Geophys. Res. Lett. 34(1–4), L06101 (2007). doi:10.1029/2006GL028879

    Article  Google Scholar 

  • W.D. Gonzalez, E. Echer, A.L. Clúa de Gonzalez, B.T. Tsurutani, Reply to ‘Comment by Y.I. Yermolaev and M.Y. Yermolaev on ‘Interplanetary origin of intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23’. Geophys. Res. Lett. 35(1–2), L01102 (2008). doi:10.1029/2007GL031856

    Article  Google Scholar 

  • W.D. Gonzalez, E. Echer, A.L. Clúa de Gonzalez, B.T. Tsurutani, G.S. Lakhina, Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms. J. Atmos. Sol.-Terr. Phys. (2010). doi:10.1016/j.jastp.2010.07.023. http://www.sciencedirect.com/science/article/B6VHB-50NBNXT-2/2/18a6e3a828df6058d7b7e66430f1d5b2

    Google Scholar 

  • J.T. Gosling, D.J. McComas, J.L. Phillips, F. Tang, S.I. Akasofu, S.J. Bame, Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96(A5), 7831–7839 (1991)

    Article  ADS  Google Scholar 

  • M.R. Hairston, T.W. Hill, R.A. Heelis, Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm. Geophys. Res. Lett. 30(6), 1325 (2003). doi:10.1029/2002GL015894

    Article  ADS  Google Scholar 

  • M.R. Hairston, K.A. Drake, R. Skoug, Saturation of the ionospheric polar cap potential during the October–November 2003 superstorms. J. Geophys. Res. 110(1–12), A09S26 (2005). doi:10.1029/2004JA010864

    Article  Google Scholar 

  • D.V. Hoyt, K. Schatten, The Role of the Sun in Climate Change (Oxford University Press, London, 1997)

    Google Scholar 

  • K.E.J. Huttunen, H.E.J. Koskinen, R. Schwenn, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107(A7), 1–8 (2002). doi:10.1029/2001JA900171

    Article  Google Scholar 

  • Y. Kamide, N. Yokoyama, W.D. Gonzalez, B.T. Tsurutani, I.A. Daglis, A. Brekke, S. Masuda, Two-step development of geomagnetic storms. J. Geophys. Res. 103, 6917 (1998)

    Article  ADS  Google Scholar 

  • J.G. Kappenman, Great geomagnetic storms and impulsive geomagnetic field disturbance events—an analysis of observational evidence including the great storm of May 1921. Adv. Space Res. 38, 188 (2006)

    Article  ADS  Google Scholar 

  • D.S. Kimbal, A study of the Aurora of 1859, Sci. Rept., UAG-R 109, University of Alaska, Fairbanks, Alaska, 1960

  • G.S. Lakhina, S. Alex, B.T. Tsrutani, W.D. Gonzalez, Research on Historical Records of Geomagnetic Storms, Coronal and Stellar Mass Ejections (Cambridge University Press, Cambridge, 2005), 226 pp.

    Google Scholar 

  • E. Loomis, On the great auroral exhibition of Aug. 28th to Sept. 4, 1859, and on Auroras generally. Am. J. Sci. 82, 318 (1891)

    Google Scholar 

  • R.E. Lopez, J.G. Lyon, E. Mitchell, R. Bruntz, V.G. Merkin, S. Brogl, F. Tofolletto, M. Wiltberger, Why doesn’t the ring current injection rate saturate? J. Geophys. Res. 114, 1–8 (2009). doi:10.1029/2008JA013141

    Article  Google Scholar 

  • N.A.F. Moos, Magnetic Observations Made at the Government Observatory, Bombay 1846–1905, Part II, Gov. Centr. Press, Bombay, 1910

    Google Scholar 

  • I.G. Richardson, D.F. Webb, D.B. Berdichevsky, D.A. Biesecker, J.C. Kasper, R. Kataoka, J.T. Steinberg, B.J. Thompsom, C.C. Wu, A.N. Zhukov, Major geomagnetic storms (Dst≤−100 nT), generated by corotating interaction regions. J. Geophys. Res. 111(1–7), A07S09 (2006). doi:10.1029/2005JA011476

    Article  Google Scholar 

  • S.G. Shepherd, R.A. Greenwald, J.M. Ruohoniemi, Cross polar cap potentials measured with super dual auroral radar network during quasi-steady solar wind and interplanetary magnetic field conditions. J. Geophys. Res. 107(A7), 1094 (2002). doi:10.1029/2001JA000152

    Article  Google Scholar 

  • N. Srivastava, Predicting the occurrence of superstorms. Ann. Geophys. 23, 2989 (2005)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, F. Tang, S.I. Akasofu, E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8519–8531 (1988)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, F. Tang, Y.T. Lee, Great magnetic storms. Geophys. Res. Lett. 19, 73 (1992a)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, F. Tang, Y.T. Lee, M. Okada, D. Park, Solar wind ram pressure corrections and an estimation of the efficiency of viscous interaction. Geophys. Res. Lett. 19, 1993 (1992b)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L. Clúa de Gonzalez, F. Tang, J.K. Arballo, M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100(A11), 21717–21733 (1995)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, G.S. Lakhina, S. Alex, The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. 108(1–8), 1268 (2003). doi:10.1029/2002JA009504

    Article  Google Scholar 

  • B.T. Tsurutani, L.F. Guarnieri, T. Fuller-Rowell, A.J. Manucci, W.D. Gonzalez, D.L. Judge, P. Gangopadhyay, A. Saito, T. Tsuda, O.P. Verkhoglyadova, G.A. Zambon, Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: comparison of the halloween 2003 and the Bastille Day events. Radio Sci. 41(1–7), RS5S07 (2006). doi:10.1029/2005RS003331

    Article  Google Scholar 

  • B.T. Tsurutani, E. Echer, L.F. Guarnieri, J.U. Kozyra, Cawses November 7–8, 2004, superstorm: complex solar and interplanetary features in the post-solar maximum phase. Geophys. Res. Lett. 35(1–6), L06S05 (2008). doi:10.1029/2007GL031473

    Article  Google Scholar 

  • O.L. Vaisberg, G.N. Zastenker, Solar wind and magnetosheath observations at Earth during August 1972. Space Sci. Rev. 19, 687 (1976)

    Article  ADS  Google Scholar 

  • V.M. Vasyliunas, The largest imaginable magnetic storm. J. Atmos. Sol.-Terr. Phys. (2010, in press). doi:10.1016/j.jastp.2010.05.012

    Google Scholar 

  • Y.I. Yermolaev, M.Y. Yermolaev, Comment on ‘Interplanetary origin of intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23’ by W.D. Gonzalez et al. J. Geophys. Res. 35(1–2), L01101 (2008). doi:10.1029/2007GL030281

    Google Scholar 

  • J.C. Zhang, M.W. Liemohn, J.U. Kozyra, M.F. Thomsem, H.A. Elliot, J.M. Weygand, A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J. Geophys. Res. 111(1–16), A01104 (2006). doi:10.1029/2005JA011065

    Article  Google Scholar 

  • J.C. Zhang, I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, J.C. Kasper, N.V. Nitta, W. Poomvises, B.J. Thompsom, C.C. Wu, S. Yashiro, A.N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996–2005. J. Geophys. Res. 112(1–19), A10102 (2007). doi:10.1029/2007JA012321

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, W.D., Echer, E., Tsurutani, B.T. et al. Interplanetary Origin of Intense, Superintense and Extreme Geomagnetic Storms. Space Sci Rev 158, 69–89 (2011). https://doi.org/10.1007/s11214-010-9715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9715-2

Keywords

Navigation