Skip to main content
Log in

Observations and Models of the Long-Term Evolution of Earth’s Magnetic Field

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The geomagnetic signal contains an enormous temporal range—from geomagnetic jerks on time scales of less than a year to the evolution of Earth’s dipole moment over billions of years. This review compares observations and numerical models of the long-term range of that signal, for periods much larger than the typical overturn time of Earth’s core. On time scales of 105–109 years, the geomagnetic field reveals the control of mantle thermodynamic conditions on core dynamics. We first briefly describe the general formalism of numerical dynamo simulations and available paleomagnetic data sets that provide insight into paleofield behavior. Models for the morphology of the time-averaged geomagnetic field over the last 5 million years are presented, with emphasis on the possible departures from the geocentric axial dipole hypothesis and interpretations in terms of core dynamics. We discuss the power spectrum of the dipole moment, as it is a well-constrained aspect of the geomagnetic field on the million year time scale. We then summarize paleosecular variation and intensity over the past 200 million years, with emphasis on the possible dynamical causes for the occurrence of superchrons. Finally, we highlight the geological evolution of the geodynamo in light of the oldest paleomagnetic records available. A summary is given in the form of a tentative classification of well-constrained observations and robust numerical modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Anufriev, C. Jones, A. Soward, The Boussinesq and anelastic liquid approximations for convection in the Earth’s core. Phys. Earth Planet. Inter. 152(3), 163–190 (2005). doi:10.1016/j.pepi.2005.06.004

    ADS  Google Scholar 

  • J. Aubert, J. Aurnou, J. Wicht, The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945–956 (2008a). doi:10.1111/j.1365-246X.2007.03693.x

    ADS  Google Scholar 

  • J. Aubert, H. Amit, G. Hulot, P. Olson, Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454(7205), 758–80 (2008b). doi:10.1038/nature07109

    ADS  Google Scholar 

  • J. Aubert, S. Labrosse, C. Poitou, Modelling the paleo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009)

    ADS  Google Scholar 

  • A. Biggin, D. van Hinsbergen, C. Langereis, G. Straathof, M. Deenen, Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Phys. Earth Planet. Inter. 169, 3–19 (2008a)

    ADS  Google Scholar 

  • A.J. Biggin, G.H.M.A. Strik, C.G. Langereis, Evidence for a verylong-term trend in geomagnetic secular variation. Nat. Geosci. 1, 395–398 (2008b)

    ADS  Google Scholar 

  • J. Bloxham, The effect of thermal core-mantle interactions on the palaeomagnetic secular variation. Philos. Trans. R. Soc. Lond. 358(1768), 1171–1179 (2000)

    ADS  Google Scholar 

  • J. Bloxham, Time-independent and time-dependent behaviour of high-latitude flux bundles at the core-mantle boundary. Geophys. Res. Let. 29(18), 1854 (2002)

    ADS  Google Scholar 

  • J. Bloxham, D. Gubbins, Thermal core-mantle interactions. Nature 325, 511–513 (1987)

    ADS  Google Scholar 

  • D.G.J. Bloxham, A. Jackson, Geomagnetic secular variation. Philos. Trans. R. Soc. Lond. A 329, 415–502 (1989)

    ADS  Google Scholar 

  • C. Bouligand, G. Hulot, A. Khokhlov, G.A. Glatzmaier, Statistical paleomagnetic field modeling and dynamo numerical simulation. Geophys. J. Int. 161, 603–626 (2005)

    ADS  Google Scholar 

  • S.I. Braginsky, P.H. Roberts, Equations governing convection in Earths core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79(1–4), 1–97 (1995)

    ADS  Google Scholar 

  • J.E.T. Channell, Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res. 104(B10), 22937–22951 (1999)

    ADS  Google Scholar 

  • J.E.T. Channell, D.A. Hodell, B. Lehman, Relative geomagnetic paleointensity and 18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 153, 103–118 (1997)

    ADS  Google Scholar 

  • J.E.T. Channell, C. Xuan, D.A. Hodell, Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283(1–4), 14–23 (2009). doi:10.1016/j.epsl.2009.03.012

    ADS  Google Scholar 

  • U. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 117, 97–114 (2006). doi:10.1111/j.1365-246X.2006.03009.x

    ADS  Google Scholar 

  • U. Christensen, P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flux. Phys. Earth Planet. Inter. 138, 39–54 (2003). doi:10.1016/S0031-9201(03)00064-5

    ADS  Google Scholar 

  • U. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004). doi:10.1038/nature02508

    ADS  Google Scholar 

  • U.R. Christensen, J. Wicht, Treatise of Geophysics. 8-core Dynamics, vol. 8 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • U.R. Christensen, J. Aubert, F.H. Busse, P. Cardin, E. Dormy, S. Gibbons, G.A. Glatzmaier, Y. Honkura, C.A. Jones, M. Kono, M. Matsushima, A. Sakuraba, F. Takahashi, A. Tilgner, J. Wicht, K. Zhang, A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 25–34 (2001)

    ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, G. Hulot, Conditions for earth-like geodynamo models. Earth. Plan. Sci. Lett. (2010). doi:10.1016/j.epsl.2010.06.009

    Google Scholar 

  • B. Clement, Geographic distribution of transitional vgps: evidence for non-zonal equatorial symmetry during the matuyama–brunhes geomagnetic reversal. Earth Planet. Sci. Lett. 104, 48–58 (1991)

    ADS  Google Scholar 

  • R. Coe, The determination of paleointensities of the earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thelliers method. J. Geomagn. Geoelectr. 19, 157–179 (1967)

    Google Scholar 

  • R.S. Coe, G.A. Glatzmaier, Symmetry and stability of the geomagnetic field. Geophys. Res. Lett. 33(21) (2006). doi:10.1029/2006GL027903

  • C.G. Constable, C.L. Johnson, Anisotropic paleosecular variation models: Implications for geomagnetic observables. Phys. Earth Planet. Inter. 115, 35–51 (1999)

    ADS  Google Scholar 

  • C. Constable, C. Johnson, A paleomagnetic power spectrum. Phys. Earth Planet. Inter. 153(1–3, Sp. Iss. SI), 61–73 (2005). doi:10.1016/j.pepi.2005.03.015

    ADS  Google Scholar 

  • S. Costin, B. Buffett, Preferred reversal paths caused by a heterogeneous conducting layer at the base of the mantle. J. Geophys. Res. 109 (2005). doi:10.1029/2003002853

  • R.D. Cottrell, J.A. Tarduno, Geomagnetic paleointensity derived from single plagioclase crystals. Earth Planet. Sci. Lett. 169, 1–5 (1999)

    ADS  Google Scholar 

  • R.D. Cottrell, J.A. Tarduno, In search of high-fidelity geomagnetic paleointensities; a comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses. J. Geophys. Res. 105, 23579–23594 (2000)

    ADS  Google Scholar 

  • V. Courtillot, P. Olson, Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth. Planet. Sci. Let. 260(3–4), 495–504 (2007). doi:10.1016/j.epsl.2007.06.003

    ADS  Google Scholar 

  • A. Cox, Lengths of geomagnetic polarity intervals. J. Geophys. Res. 73, 3247–3260 (1968)

    ADS  Google Scholar 

  • A. Cox, R. Doell, Review of paleomagnetism. Bull. Geol. Soc. Am. 71, 645–768 (1960)

    Google Scholar 

  • A. Cox, R. Doell, Long period variations of the geomagnetic field. Bull. Seism. Soc. Am., 2243–2270 (1964)

  • C.J. Davies, D. Gubbins, A.P. Willis, P.K. Jimack, Time-averaged paleomagnetic field and secular variation: Predictions from dynamo solutions based on lower mantle seismic tomography. Phys. Earth Planet. Inter. 169(1–4, Sp. Iss. SI), 194–203 (2008). doi:10.1016/j.pepi.2008.07.021

    ADS  Google Scholar 

  • P. Driscoll, P. Olson, Polarity reversals in geodynamo models with core evolution. Earth. Planet. Sci. Let. 282(1–4), 24–33 (2009a). doi:10.1016/j.epsl.2009.02.017

    ADS  Google Scholar 

  • P. Driscoll, P. Olson, Effects of buoyancy and rotation on the polarity reversal frequency of gravitationally-driven numerical dynamos. Geophys. J. Int. 178, 1337–1350 (2009b)

    ADS  Google Scholar 

  • D.J. Dunlop, K.L. Buchan, Thermal remagnetization and the paleointensity record of metamorphic rocks. Phys. Earth Planet. Inter. 13, 325–331 (1977)

    ADS  Google Scholar 

  • D. Dunlop, O. Özdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • D.J. Dunlop, Y. Yu, Intensity and polarity of the geomagnetic field during precambrian time, in Timescales of the Paleomagnetic Field, ed. by J. Channell, D. Kent, W. Lowrie, J. Meert. Geophs. Monogr. Ser., vol. 145 (AGU, Washington, 2004), pp. 85–100

    Google Scholar 

  • D.A.D. Evans, Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444(7115), 51–55 (2006). doi:10.1038/nature05203

    ADS  Google Scholar 

  • Y. Gallet, G. Hulot, Stationary and non-stationary behavior within the geomagnetic polarity timescale. Geophys. Res. Lett. 24, 1875–1878 (1997)

    ADS  Google Scholar 

  • G.A. Glatzmaier, P.H. Roberts, A three dimensional self consistent computer simulation of the geomagnetic field reversal. Nature 377, 203–209 (1995)

    ADS  Google Scholar 

  • G.A. Glatzmaier, R.S. Coe, L. Hongre, P.H. Roberts, The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401(6756), 885–890 (1999)

    ADS  Google Scholar 

  • F.M. Gradstein, J.G. Ogg, A.G. Smith (eds.), A Geologic Time Scale 2004 (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • D. Gubbins, J. Bloxham, Geomagnetic field analysis—iii. magnetic fields on the core-mantle boundary. Geophys. J. Int. 80, 695–713 (1985)

    ADS  Google Scholar 

  • D. Gubbins, P. Kelly, Persistent patterns in the geomagnetic field over the past 2.5 Myr. Nature 365, 829–832 (1993)

    ADS  Google Scholar 

  • D. Gubbins, M. Richards, Coupling of the core dynamo and mantle: thermal or topographic? Geophys. Res. Lett. 365, 1521–1524 (1986)

    ADS  Google Scholar 

  • D. Gubbins, A.P. Willis, B. Sreenivasan, Correlation of earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter. 162(3–4), 256–260 (2007)

    ADS  Google Scholar 

  • Y. Guyodo, J. Valet, Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399, 249–252 (1999)

    ADS  Google Scholar 

  • C.J. Hale, Paleomagnetic data suggest link between the Archean-Proterozoic boundary and inner-core nucleation. Nature 329(6136), 233–237 (1987)

    ADS  Google Scholar 

  • S.L. Halgedahl, R. Day, M. Fuller, The effect of cooling rate on the intensity of weak-field trm in single-domain magnetite. J. Geophys. Res. 85, 3690–3698 (1980)

    ADS  Google Scholar 

  • R. Hide, On the Earth’s core-mantle interface. Q. J. R. Meterol. Soc. 96, 579–590 (1970)

    ADS  Google Scholar 

  • J. Hospers, Remanent magnetism of rocks and the history of the geomagnetic field. Nature 168, 1111–1112 (1951)

    ADS  Google Scholar 

  • G. Hulot, Y. Gallet, Do superchrons occur without any palaeomagnetic warning? Earth Planet. Sci. Lett. 210(1–2), 191–201 (2003). doi:10.1016/S0012-821X(03)00130-4

    ADS  Google Scholar 

  • G. Hulot, C. Eymin, B. Langlais, M. Mandea, N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620–623 (2002)

    ADS  Google Scholar 

  • A. Jackson, A.R.T. Jonkers, M.R. Walkers, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. A 358, 957–990 (2000)

    ADS  Google Scholar 

  • C. Johnson, C. Constable, The time averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys. J. Int. 112, 489–519 (1995)

    ADS  Google Scholar 

  • C.L. Johnson, C.G. Constable, The time-averaged geomagnetic field: Global and regional biases for 0–5 ma. Geophys. J. Int. 131, 643–666 (1997)

    ADS  Google Scholar 

  • C. Johnson, C.G. Constable, Biases in time-averaged field and paleosecular variation studies. EOS Trans. AGU, Fall Meeting Suppl. 90(52), 23–0775 (2009)

    Google Scholar 

  • C. Johnson, P. McFadden, Treatise on Geophysics, Geomagnetism, Time-Averaged Field and Paleosecular Variation, vol. 5 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • C.L. Johnson, C. Constable, L. Tauxe, R. Barendregt, L. Brown, R. Coe, P. Layer, V. Mejia, N. Opdyke, B. Singer, H. Staudigel, D. Stone, Recent investigations of the 0–5 ma geomagentic field recorded by lava flows. Geochem. Geophys. Geosyst. 9(4) (2008). doi:10.1029/2007GC001696

  • P. Kelly, D. Gubbins, The geomagnetic field over the past 5 million years. Geophys. J. Int. 128(2), 315–330 (1997)

    ADS  Google Scholar 

  • D. Kent, M. Smethurst, Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett. 160(3–4), 391–402 (1998)

    ADS  Google Scholar 

  • M. Kono, P.H. Roberts, Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40(4), 1013 (2000)

    ADS  Google Scholar 

  • M. Kono, H. Tanaka, Mapping the gauss coefficients to the pole and the models of paleosecular variation. J. Geomagn. Geoelectr. 47, 115–130 (1995)

    Google Scholar 

  • M. Korte, A. Genevey, C. Constable, U. Frank, E. Schnepp, Continuous geomagnetic field models for the past 7 millenia: 1. A new global data compilation. Geochem. Geophys. Geosyst. 6 (2005)

  • C. Kutzner, U. Christensen, From stable dipolar to reversing numerical dynamos. Phys. Earth Planet. Inter. 131, 29–45 (2002)

    ADS  Google Scholar 

  • S. Labrosse, Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143 (2003)

    ADS  Google Scholar 

  • S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450(7171), 866–869 (2007)

    ADS  Google Scholar 

  • C. Laj, A. Mazaud, A.R. Weeks, M. Fuller, E. Herrerobervera, Geomagnetic reversal paths. Nature 351(6326), 447 (1991)

    ADS  Google Scholar 

  • C. Laj, C. Kissel, A. Mazaud, J. Channell, J. Beer, North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philos. Trans. R. Soc. Lond. 358(1768), 1009–1025 (2000)

    ADS  Google Scholar 

  • H. Lammer, J. Kasting, E. Chassefière, R. Johnson, Yu.N. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008)

    ADS  Google Scholar 

  • R.L. Larson, P. Olson, Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett. 107(3–4), 437–447 (1991). doi:10.1016/0012-821X(91)90091-U

    ADS  Google Scholar 

  • K. Lawrence, C. Constable, C.L. Johnson, Paleosecular variation and the average geomagnetic field at ±20° latitude. Geochem. Geophys. Geosyst. 7 (2006). doi:10.1029/2005GC001181

  • J.R. Lister, Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Inter. 140(1–3), 145–158 (2003). doi:10.1016/j.pepi.2003.07.007

    ADS  Google Scholar 

  • J.R. Lister, B.A. Buffett, The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91(1–3), 17–30 (1995)

    Google Scholar 

  • M. Macouin, J. Valet, J. Besse, K. Buchan, R. Ernst, M. LeGoff, U. Scharer, Low paleointensities recorded in 1 to 2.4 Ga Proterozoic dykes, Superior Province, Canada. Earth Planet. Sci. Lett. 213, 79–95 (2003)

    ADS  Google Scholar 

  • G. Masters, G. Laske, H. Bolton, A. Dziewonski, The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure, in Earth’s Deep Interior, vol. 117, ed. by S. Karato, A. Forte, R.C. Liebermann, M. G., L. Stixrude (AGU Monograph, Washington, 2000)

    Google Scholar 

  • M.W. McElhinny, W.E. Senanayake, Paleomagnetic evidence for the existence of the geomagnetic field 3.5 ga ago. J. Geophys. Res. 85, 3523–3528 (1980)

    ADS  Google Scholar 

  • M. McElhinny, P. McFadden, R. Merrill, The myth of the Pacific dipole window. Earth Planet. Sci. Lett. 143(1–4), 13–22 (1996)

    ADS  Google Scholar 

  • P.L. McFadden, R.T. Merrill, M.W. McElhinny, S.H. Lee, Reversals of the earths magnetic-field and temporal variations of the dynamo families. J. Geophys. Res. 96(B3), 3923–3933 (1991)

    ADS  Google Scholar 

  • R.T. Merrill, M.W. McElhinny, Anomalies in the time averaged paleomagnetic field and their implications for the lower mantle. Rev. Geophys. 15, 309–323 (1977)

    ADS  Google Scholar 

  • R. Merrill, P. McFadden, The geomagnetic axial dipole field assumption. Phys. Earth Planet. Inter. 139(3–4), 171–185 (2003). doi:10.1016/j.pepi.2003.07.016

    ADS  Google Scholar 

  • R.T. Merrill, M. McElhinny, P.L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core and the Deep Mantle (Academic Press, San Diego, 1996)

    Google Scholar 

  • L. Neél, Théorie du traînage magneétique des ferromagnéetiques en grains fins avec application aux terres cuites. Ann. Géophys. 5, 99–136 (1949)

    Google Scholar 

  • L. Neél, Some theoretical aspects of rock magnetism. Philos. Mag. Suppl. 4, 191–243 (1955)

    Google Scholar 

  • F. Nimmo, Treatise on Geophysics, Core Dynamics, Energetics of the Core, vol. 8 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • P. Olson, Gravitational dynamos and the low frequency geomagnetic secular variation. Proc. Natl. Acad. Sci. 104(51), 20159–20166 (2007). doi:10.1073/pnas.0709081104

    ADS  Google Scholar 

  • P. Olson, U. Christensen, The time averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002)

    ADS  Google Scholar 

  • P. Olson, U.R. Christensen, Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Let. 250(3–4), 561–571 (2006). doi:10.1016/j.epsl.2006.08.008

    ADS  Google Scholar 

  • P. Olson, U. Christensen, G.A. Glatzmaier, Numerical modelling of the geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res. 104(B5), 10383–10404 (1999)

    ADS  Google Scholar 

  • N. Opdyke, J. Channell, Magnetic Stratigraphy (Academic Press, San Diego, 1996)

    Google Scholar 

  • N.D. Opdyke, K.W. Henry, A test of the dipole hypothesis. Earth Planet. Sci. Lett. 6, 139–151 (1969)

    ADS  Google Scholar 

  • M. Ozima, K. Seki, N. Terada, Y.N. Miura, F.A. Podosek, H. Shinagawa, Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005)

    ADS  Google Scholar 

  • V. Pavlov, Y. Gallet, Variations in geomagnetic reversal frequency during the Earth’s middle age. Geochem. Geophys. Geosyst. 11, 01710 (2010)

    Google Scholar 

  • M. Prévot, M.E.M. Derder, M. McWilliams, J. Thompson, Intensity of the Earth’s magnetic field: Evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett. 97, 129–139 (1990)

    ADS  Google Scholar 

  • G. Pullaiah, E. Irving, K.L. Buchan, D.J. Dunlop, Magnetization changes caused by burial and uplift. Earth Planet. Sci. Lett. 28, 133–143 (1975)

    ADS  Google Scholar 

  • X. Quidelleur, V. Courtillot, On low degree spherical harmonic models of paleosecular variation. Phys. Earth Planet. Inter. 95, 55–77 (1996)

    ADS  Google Scholar 

  • K. Riedel, A. Sidorenko, Minimum bias multiple taper spectral estimation. IEEE Trans. Signal Process. 43, 188–195 (1995)

    ADS  Google Scholar 

  • A. Sakuraba, Y. Hamano, Turbulent structure in Earth’s fluid core inferred from time series of geomagnetic dipole moment. Geophys. Res. Lett. 34(15) (2007). doi:10.1029/2007GL029898

  • A. Sakuraba, M. Kono, Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111(1–2), 105–121 (1999)

    ADS  Google Scholar 

  • P. Selkin, L. Tauxe, Long-term variations in palaeointensity. Philos. Trans. R. Soc. Lond. A 358(1768), 1065–1088 (2000)

    ADS  Google Scholar 

  • R.D. Simitev, F.H. Busse, Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. EPL 85(1) (2009). doi:10.1209/0295-5075/85/19001

  • A. Smirnov, J. Tarduno, Secular variation of the Late Archean Early Proterozoic geodynamo. Geophys. Res. Lett. 31(16) (2004). doi:10.1029/2004GL020333

  • A. Smirnov, J. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak? J. Geophys. Res. 110, 06103 (2005). doi:10.1029/2004JB003445

    Google Scholar 

  • A.V. Smirnov, J.A. Tarduno, B.N. Pisakin, Paleointensity of the early geodynamo (2.45 Ga) as recorded in Karelia; a single-crystal approach. Geology 31, 415–418 (2003)

    ADS  Google Scholar 

  • B. Sreenivasan, D. Gubbins, Dynamos with weakly convecting outer layers: implications for core-mantle boundary interaction. Geophys. Astrophys. Fluid Dyn. 102(4), 395–407 (2008). doi:10.1080/03091920801900047

    MathSciNet  Google Scholar 

  • F.D. Stacey, S.K. Banerjee, The Physical Principles of Rock Magnetism (Elsevier, Amsterdam, 1974)

    Google Scholar 

  • J. Stoner, C. Laj, J. Channell, C. Kissel, South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Q. Sci. Rev. 21(10), 1141–1151 (2002)

    ADS  Google Scholar 

  • G. Strik, T. Blake, T. Zegers, S. White, C. Langereis, Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field. J. Geophys. Res. 108(B12) (2003). doi:10.1029/2003JB002475

  • F. Takahashi, H. Tsunakawa, M. Matsushima, N. Mochizuki, Y. Honkura, Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet. Sci. Lett. 272(3–4), 738–746 (2008). doi:10.1016/j.epsl.2008.06.017

    ADS  Google Scholar 

  • H. Tanaka, M. Kono, H. Uchimura, Some global features of paleointensity in geological time. Geophys. J. Int. 120, 97–102 (1995)

    ADS  Google Scholar 

  • J.A. Tarduno, Geodynamo history preserved in single silicate crystals; origins and long-term mantle control. Elements 5, 217–222 (2009)

    Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res. 110, 11101 (2005)

    ADS  Google Scholar 

  • J.A. Tarduno, A.V. Smirnov, The paradox of lowfield values and the long-term history of the geodynamo, in Timescales of the Paleomagnetic Field, ed. by J. Channell, D. Kent, W. Lowrie, J. Meert. Geophys. Monogr. Ser., vol. 145 (AGU, Washington, 2004), pp. 75–84

    Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, A.V. Smirnov, High geomagnetic intensity during the mid-cretaceous from thellier analyses of single plagioclase crystals. Science 291, 1779–1783 (2001)

    ADS  Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, A.V. Smirnov, The Cretaceous superchron geodynamo: Observations near the tangent cylinder. Proc. Natl. Acad. Sciences 99, 14020–14025 (2002)

    ADS  Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, A.V. Smirnov, The paleomagnetism of single silicate crystals; recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth. Rev. Geophys. 44, 1002 (2006)

    ADS  Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446(7136), 657–660 (2007). doi:10.1038/nature05667

    ADS  Google Scholar 

  • J.A. Tarduno, J. Nelson, R.D. Cottrell, M.K. Watkeys, Exploring the magnetic sands of time: using zircons and other sedimentary detritus to understand the early geodynamo. Eos Trans. AGU 90(22) (2009). Jt. Assem. Suppl., Abstract GP21A-03

  • J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, A. Hofmann, P.V. Doubrovine, E.E. Mamajek, D. Liu, D.G. Sibeck, L.P. Neukirch, Y. Usui, Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327(5970), 1238–1240 (2010). doi:10.1126/science.1183445. http://www.sciencemag.org/cgi/content/abstract/327/5970/1238

    ADS  Google Scholar 

  • L. Tauxe, D. Kent, A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? in Timescales of the Paleomagnetic Field, vol. 145, ed. by J.E.T. Channell, D.V. Kent, W. Lowrie, J.G. Meert (AGU, Washington, 2004), pp. 101–115

    Google Scholar 

  • L. Tauxe, H. Staudigel, Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst 5, 02–06 (2004)

    Google Scholar 

  • L. Tauxe, T. Yamazaki, Paleointensities, in Treatise on Geophysics. 5-Geomagnetism, ed. by G. Schubert (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • E. Thellier, O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15, 285–376 (1959)

    Google Scholar 

  • T. Torsvik, R. Van der Voo, Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 151(3), 771–794 (2002)

    ADS  Google Scholar 

  • Y. Usui, J.A. Tarduno, M. Watkeys, A. Hofmann, R.D. Cottrell, Evidence for a 3.45-billion-year-old magnetic remanence; hints of an ancient geodynamo from conglomerates of South Africa. Geochem. Geophys. Geosyst. 10, 09–07 (2009)

    Google Scholar 

  • J.P. Valet, Time variations in geomagnetic intensity. Rev. Geophys. 41(1), 1004 (2003)

    ADS  Google Scholar 

  • J.P. Valet, L. Meynadier, Geomagnetic field intensity and reversals during the past four million years. Nature 336, 234–238 (1993)

    ADS  Google Scholar 

  • J. Valet, L. Meynadier, Y. Guyodo, Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435(7043), 802–805 (2005). doi:10.1038/nature03674

    ADS  Google Scholar 

  • R. van der Hilst, M.V. De Hoop, P. Wang, S.H. Shim, P. Ma, L. Tenorio, Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region. Science 315, 1813–1817 (2007)

    ADS  Google Scholar 

  • R. Van der Voo, T. Torsvik, Evidence for late Paleozoic and Mesozoic non-dipole fields provides an explanation for the Pangea reconstruction problems. Earth Planet. Sci. Lett. 187(1–2), 71–81 (2001)

    ADS  Google Scholar 

  • J. Wicht, Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281–302 (2002)

    ADS  Google Scholar 

  • J. Wicht, Palaeomagnetic interpretation of dynamo simulations. Geophys. J. Int. 162, 371–380 (2005). doi:10.1111/j.1365-246X.2005.02665.x

    ADS  Google Scholar 

  • A.P. Willis, B. Sreenivasan, D. Gubbins, Thermal core-mantle interaction: Exploring regimes for ‘locked’ dynamo action. Phys. Earth Planet. Int. 165(1–2), 83–92 (2007). doi:10.1016/j.pepi.2007.08.002

    ADS  Google Scholar 

  • R. Wilson, Permanent aspects of the earth’s non-dipole magnetic field over Upper Tertiary times. Geophys. J. 19, 417–439 (1970)

    ADS  Google Scholar 

  • M. Winklhofer, K. Fabian, F. Heider, Magnetic blocking temperatures of magnetite calculated with a three-dimensional micromagnetic model. J. Geophys. Res. 102, 22695–22709 (1997)

    ADS  Google Scholar 

  • A. Yoshihara, Y. Hamano, Paleomagnetic constraints on the Archean geomagnetic field intensity obtained from komatiites of the Barberton and Belingwe greenstone belts, South Africa and Zimbabwe. Precambrian Res. 131, 111–142 (2004)

    Google Scholar 

  • T. Zhang, et al., Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature 450, 654–656 (2007)

    ADS  Google Scholar 

  • L.B. Ziegler, C.G. Constable, C.L. Johnson, Testing the robustness and limitations of 0–1 Ma absolute paleointensity data. Phys. Earth Planet. Inter. 170(1–2), 34–45 (2008). doi:10.1016/j.pepi.2008.07.027

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Aubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, J., Tarduno, J.A. & Johnson, C.L. Observations and Models of the Long-Term Evolution of Earth’s Magnetic Field. Space Sci Rev 155, 337–370 (2010). https://doi.org/10.1007/s11214-010-9684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9684-5

Keywords

Navigation