Skip to main content
Log in

Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Aksnes, F.A. Franklin, Astron. J. 122, 2734–2739 (2001)

    ADS  Google Scholar 

  • G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 624, 1–124 (1997)

    ADS  Google Scholar 

  • V.A. Avdyushev, Sol. Syst. Res. 38, 238–240 (2004)

    ADS  Google Scholar 

  • A.C. Barr, R.T. Pappalardo, J. Geophys. Res. 110, E12 (2005). CiteID E12005

    Google Scholar 

  • R.H. Brown, T.V. Johnson, R.L. Kirk, L.A. Soderblom, Science 250, 431–435 (1990)

    ADS  Google Scholar 

  • J.C. Castillo-Rogez, D.L. Matson, C. Sotin, T.V. Johnson, J.I. Lunine, P.C. Thomas, Icarus 190, 179–202 (2007)

    ADS  Google Scholar 

  • A. Cayley, Mem. R. Astron. Soc. 29, 191–306 (1861)

    Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics (Clarendon, Oxford, 1961)

    MATH  Google Scholar 

  • G. Choblet, E.M. Parmentier, Phys. Earth Planet. Inter. 173, 290–296 (2009)

    ADS  Google Scholar 

  • D.M. Cole, Philos. Mag. A 72, 231–248 (1995)

    ADS  Google Scholar 

  • D.M. Cole, R.A. Johnson, G.D. Durell, J. Geophys. Res. 103(C10), 21751–21758 (1998)

    ADS  Google Scholar 

  • R.L. Comstock, B.G. Bills, J. Geophys. Res. 108(E9), 5100 (2003). doi:10.1029/2003JE00210

    Google Scholar 

  • W. De Sitter, Leiden Ann. 16(2), 1–92 (1928)

    Google Scholar 

  • F. Deschamps, C. Sotin, J. Geophys. Res. 106, 5107–5121 (2001)

    ADS  Google Scholar 

  • G. Dourneau, Thesis, Bordeaux, 1987

  • W.B. Durham, O. Prieto-Ballesteros, D.L. Goldsby, J.S. Kargel, Space Sci. Rev. (2010, this issue). doi:10.1007/s11214-009-9619-1

  • D.H. Eckhardt, Moon Planets 25, 3–49 (1981)

    MATH  ADS  Google Scholar 

  • J. Eluszkiewicz, Icarus 84, 215–225 (1990)

    ADS  Google Scholar 

  • S. Ferraz-Mello, A. Rodriguez, H. Hussmann, Celest. Mech. Dyn. Astron. 101, 171–201 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  • P.E. Geissler, Annu. Rev. Earth Planet. Sci. 31, 175–211 (2003)

    ADS  Google Scholar 

  • P. Goldreich, Mon. Not. R. Astron. Soc. 126, 257–268 (1963)

    MATH  ADS  Google Scholar 

  • P. Goldreich, S.J. Peale, Astron. J. 71, 425–437 (1966)

    ADS  Google Scholar 

  • P. Goldreich, S. Soter, Icarus 5, 375–389 (1966)

    ADS  Google Scholar 

  • O. Grasset, E.M. Parmentier, J. Geophys. Res. 103, 18171–18181 (1998)

    ADS  Google Scholar 

  • O. Grasset, C. Sotin, F. Deschamps, Planet. Space Sci. 48, 617–636 (2000)

    ADS  Google Scholar 

  • R. Greenberg, S.J. Weidenschilling, Icarus 58, 186–196 (1984)

    ADS  Google Scholar 

  • J. Hillier, S.W. Squyres, J. Geophys. Res. 96, 15665–15674 (1991)

    ADS  Google Scholar 

  • G.V. Hoppa, B.R. Tufts, R. Greenberg, T.A. Hurford, D.P. O’Brien, P.E. Geissler, Icarus 153, 208–213 (2001)

    ADS  Google Scholar 

  • L.N. Howard, in Proceedings of the Eleventh International Congress of Applied Mechanics, vol. 153, ed. by H. Gortler (Springer, New York, 1964), pp. 1109–1115

    Google Scholar 

  • W.B. Hubbard, Planetary Interiors (Van Nostrand Reinhold, New York, 1984)

    Google Scholar 

  • H. Hussmann, T. Spohn, K. Wieczerkowski, Icarus 156, 143–151 (2002)

    ADS  Google Scholar 

  • H. Jeffreys, The Earth. Its Origin, History and Physical Constitution (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

  • Ö. Karatekin, T. Van Hoolst, T. Tokano, Geophys. Res. Lett. 35, L16202 (2008). doi:10.1029/2008GL034744

    ADS  Google Scholar 

  • R.L. Kirk, D.J. Stevenson, Icarus 69, 91–134 (1987)

    ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, C. Zimmer, Science 289, 1340–1343 (2000)

    ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, M. Volwerk, Icarus 157, 507–522 (2002)

    ADS  Google Scholar 

  • Y. Kozai, Ann. Tokyo Astron. Obs. 73, 1 (1957)

    Google Scholar 

  • V. Lainey, L. Duriez, A. Vienne, Astron. Astrophys. 420, 1171–1183 (2004)

    ADS  Google Scholar 

  • V. Lainey, L. Duriez, A. Vienne, Astron. Astrophys. 456, 783–788 (2006)

    ADS  Google Scholar 

  • V. Lainey, J.E. Arlot, O. Karatekin, T. Van Hoolst, Nature 459, 957–959 (2009)

    ADS  Google Scholar 

  • J. Leliwa-Kopystyński, K.J. Kossacki, Planet. Space Sci. 48, 727–745 (2000)

    ADS  Google Scholar 

  • J.H. Lieske, Astron. Astrophys. 176, 146–158 (1987)

    ADS  Google Scholar 

  • J.H. Lieske, Astron. Astrophys. 56, 333–352 (1977)

    MATH  ADS  Google Scholar 

  • K. Lodders, B. Fegley Jr., The Planetary Scientists Companion (Oxford Univ. Press, New York, 1998)

    Google Scholar 

  • G.J.F. MacDonald, Rev. Geophys. Space Phys. 2, 467–541 (1964)

    ADS  Google Scholar 

  • F. Marchis et al., Icarus 176, 96–122 (2005)

    ADS  Google Scholar 

  • A.S. McEwen, L.P. Keszthelyi, R. Lopes, P.M. Schenk, J.R. Spencer, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 307–328

    Google Scholar 

  • W.B. McKinnon, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 525

    Google Scholar 

  • W.B. McKinnon, Geophys. Res. Lett. 26, 951–954 (1999)

    ADS  Google Scholar 

  • G. Mitri, A.P. Showman, Icarus 195, 757–764 (2005)

    Google Scholar 

  • W.B. Moore, J. Geophys. Res. 108, E8 (2003). doi:10.1029/2002JE001943

    Google Scholar 

  • W.B. Moore, J. Geophys. Res. 113, B11407 (2008). doi:10.1029/2006JB004778

    ADS  Google Scholar 

  • W.B. Moore, H. Hussmann, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 369–380

    Google Scholar 

  • H. Moritz, The Figure of the Earth (Herbert Wichmann, Karlsruhe, 1990)

    MATH  Google Scholar 

  • K. Multhaup, T. Spohn, Icarus 186, 420–435 (2007)

    ADS  Google Scholar 

  • C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  • K. Nagel, D. Breuer, T. Spohn, Icarus 169, 402–412 (2004)

    ADS  Google Scholar 

  • D.B. Nash, M.H. Carr, J. Gradie, D.M. Hunten, C.F. Yoder, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 629–688,

    Google Scholar 

  • F. Nimmo, E. Gaidos, J. Geophys. Res. 107, E4 (2002). doi:10.1029/2000JE001476

    Google Scholar 

  • F. Nimmo, J.R. Spencer, R.T. Pappalardo, M.E. Mullen, Nature 447, 289–291 (2007)

    ADS  Google Scholar 

  • B. Noyelles, Celest. Mech. Dyn. Astron. 101, 13–30 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  • G.W. Ojakangas, D.J. Stevenson, Icarus 81, 220–241 (1989a)

    ADS  Google Scholar 

  • G.W. Ojakangas, D.J. Stevenson, Icarus 81, 242–270 (1989b)

    ADS  Google Scholar 

  • J. Palguta, G. Schubert, K. Zhang, J.D. Anderson, Icarus 201, 615–625 (2009)

    ADS  Google Scholar 

  • S.J. Peale, in Planetary Satellites, ed. by J.A. Burns (Univ. of Arizona Press, Tucson, 1977), pp. 87–111

    Google Scholar 

  • S.J. Peale, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 159–223

    Google Scholar 

  • S.J. Peale, Annu. Rev. Astron. Astrophys. 37, 533–602 (1999)

    ADS  Google Scholar 

  • S.J. Peale, M.H. Lee, Science 298, 593–597 (2002)

    ADS  Google Scholar 

  • S.J. Peale, P. Cassen, R.T. Reynolds, Science 203, 892–894 (1979)

    ADS  Google Scholar 

  • C.C. Porco et al., Science 311, 1393–1401 (2006)

    ADS  Google Scholar 

  • B. Preblich, R. Greenberg, J. Riley, D. O’Brien, Planet. Space Sci. 55, 1225–1245 (2007)

    ADS  Google Scholar 

  • O. Prieto-Ballesteros, J.S. Kargel, M. Fernández-Sampedro, F. Selsis, E.S. Martínez, D.L. Hogenboom, Icarus 177, 491–505 (2005)

    ADS  Google Scholar 

  • L. Prockter, F. Nimmo, R.T. Pappalardo, Geophys. Res. Lett. 32, 14 (2005). CiteID L14202

    Google Scholar 

  • N. Reeh, E. Lintz Christensen, C. Mayer, O. Olesen, Ann. Glaciol. 37, 83–89 (2003)

    ADS  Google Scholar 

  • R.G. Ross, J.S. Kargel, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 33

    Google Scholar 

  • R.A. Sampson, Mem. R. Astron. Soc. 63, 1–270 (1921)

    ADS  Google Scholar 

  • G. Schubert, P. Cassen, R.E. Young, Icarus 38, 192–211 (1979)

    ADS  Google Scholar 

  • G. Schubert, T. Spohn, R.T. Reynolds, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 224–292

    Google Scholar 

  • G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal, T. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 281–306

    Google Scholar 

  • G. Schubert, H. Hussmann, V. Lainey, D. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Space Sci. Rev. (2010, this issue)

  • M. Segatz, T. Spohn, M.N. Ross, G. Schubert, Icarus 75, 187–206 (1988)

    ADS  Google Scholar 

  • B.A. Smith et al., Science 204, 951–957 (1979)

    ADS  Google Scholar 

  • B. Smith-Konter, R.T. Pappalardo, Icarus 198, 435–451 (2008)

    ADS  Google Scholar 

  • L.A. Soderblom, T.L. Becker, S.W. Kieffer, R.H. Brown, C.J. Hansen, T.V. Johnson, Science 250, 410–415 (1990)

    ADS  Google Scholar 

  • F. Sohl, W.D. Sears, R.D. Lorenz, Icarus 115, 278–294 (1995)

    ADS  Google Scholar 

  • F. Sohl, H. Hussmann, B. Schwentker, T. Spohn, R.D. Lorenz, J. Geophys. Res. 108, 5130 (2003)

    Google Scholar 

  • F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R.T. Pappalardo, S. Vance, M. Zolotov, Space Sci. Rev. (2010, this issue)

  • V.S. Solomatov, Phys. Fluids 7, 266–274 (1995)

    MATH  ADS  Google Scholar 

  • V.S. Solomatov, A.C. Barr, Phys. Earth Planet. Inter. 155, 140–145 (2006)

    ADS  Google Scholar 

  • C. Sotin, S. Labrosse, Phys. Earth Planet. Inter. 112, 171–190 (1999)

    ADS  Google Scholar 

  • C. Sotin, O. Grasset, S. Beauchesne, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), pp. 79–96

    Google Scholar 

  • C. Sotin, G. Tobie, J. Wahr, W.B. McKinnon, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 85–118

    Google Scholar 

  • J.R. Spencer, J.C. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L.J. Spilker, R.M.C. Lopes, Science 311, 1401–1405 (2006)

    ADS  Google Scholar 

  • J.R. Spencer et al., Science 318, 240 (2007)

    ADS  Google Scholar 

  • T. Spohn, in Bergmann, Schaefer: Lehrbuch der Experimentalphysik, Band 7: Erde und Planeten, ed. by W. Raith (1997), pp. 427–525

  • T. Spohn, G. Schubert, Icarus 161, 456–467 (2003)

    ADS  Google Scholar 

  • K.C. Stengel, D.C. Oliver, J.R. Booker, J. Fluid Mech. 120, 411–431 (1982)

    MATH  ADS  Google Scholar 

  • B.W. Stiles, et al., Astron. J. 135(5), 1669–1680 (2008). doi:10.1088/0004-6256/135/5/1669

    ADS  Google Scholar 

  • B.W. Stiles et al. (the Cassini Radar Team), Astron. J. 139, 311 (2010)

    ADS  Google Scholar 

  • J.W. Strutt, Philos. Mag. 32, 529–546 (1916)

    Google Scholar 

  • J. Tatibouet, J. Perez, R. Vassoille, J. Phys. 47, 51–60 (1986)

    Google Scholar 

  • P.C. Thomas et al., Icarus 190, 573–584 (2007)

    ADS  Google Scholar 

  • G. Tobie, G. Choblet, C. Sotin, J. Geophys. Res. 108, E11 (2003). doi:10.1029/2003JE002099

    Google Scholar 

  • G. Tobie, A. Mocquet, C. Sotin, Icarus 177, 534–549 (2005a)

    ADS  Google Scholar 

  • G. Tobie, O. Grasset, J.I. Lunine, A. Mocquet, C. Sotin, Icarus 175, 496–502 (2005b)

    ADS  Google Scholar 

  • G. Tobie, J.I. Lunine, C. Sotin, Nature 440, 61–64 (2006)

    ADS  Google Scholar 

  • G. Tobie, O. Čadek, C. Sotin, Icarus 196, 642–652 (2008)

    ADS  Google Scholar 

  • T. Tokano, F.M. Neubauer, Geophys. Res. Lett. 32, L24203 (2005)

    ADS  Google Scholar 

  • R. Tyler, Nature 456, 770–772 (2008)

    ADS  Google Scholar 

  • T. Van Hoolst, N. Rambaux, Ö. Karatekin, V. Dehant, A. Rivoldini, Icarus 195, 386–399 (2008). doi:10.1016/j.icarus.2007.12.011

    ADS  Google Scholar 

  • T. Van Hoolst, Ö. Karatekin, in European Planetary Science Congress 2008. Extended abstract, 2008

  • T. Van Hoolst, N. Rambaux, Ö. Karatekin, Icarus 200, 256–264 (2009). doi:10.1016/j.icarus.2008.11.009

    ADS  Google Scholar 

  • S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, J.M. Brown, Astrobiology 7, 987–1005 (2007)

    ADS  Google Scholar 

  • R. Vasundhara, J.-E. Arlot, P. Descamps, in Dynamics, Ephemerides, and Astrometry of the Solar System: Proceedings of the 172nd Symposium of the International Astronomical Union, Held in Paris, France, 38 July 1995, ed. by S. Ferraz-Mello, B. Morando, J.-E. Arlot (1996), p. 145

  • A. Vienne, J.M. Sarlat, L. Duriez, in Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System: Proceedings of the 152nd Symposium of the International Astronomical Union, ed. by S. Ferraz-Mello, Angra dos Reis, Brazil, 15–19 July 1991 (Kluwer Academic, Dordrecht, 1992), p. 219

    Google Scholar 

  • J. Wisdom, Astron. J. 128, 484–491 (2004)

    ADS  Google Scholar 

  • F.E. Witteborn, J.D. Bregman, J.B. Pollack, Science 203, 643–646 (1979)

    ADS  Google Scholar 

  • C.F. Yoder, Nature 279, 767–770 (1979)

    ADS  Google Scholar 

  • D.A. Yuen, L. Fleitout, G. Schubert, C. Froidevaux, Int. J. Geophys. 54, 93–119 (1978)

    Google Scholar 

  • C. Zimmer, K.K. Khurana, M.G. Kivelson, Icarus 147, 329–347 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Hussmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussmann, H., Choblet, G., Lainey, V. et al. Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Sci Rev 153, 317–348 (2010). https://doi.org/10.1007/s11214-010-9636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9636-0

Keywords

Navigation