Skip to main content
Log in

Sunspots: From Small-Scale Inhomogeneities Towards a Global Theory

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The penumbra of a sunspot is a fascinating phenomenon featuring complex velocity and magnetic fields. It challenges both our understanding of radiative magneto-convection and our means to measure and derive the actual geometry of the magnetic and velocity fields. In this contribution we attempt to summarize the present state-of-the-art from an observational and a theoretical perspective.

We describe spectro-polarimetric measurements which reveal that the penumbra is inhomogeneous, changing the modulus and the direction of the velocity, and the strength and the inclination of the magnetic field with depth, i.e., along the line-of-sight, and on spatial scales below 0.5 arcsec. Yet, many details of the small-scale geometry of the fields are still unclear such that the small scale inhomogeneities await a consistent explanation.

A simple model which relies on magnetic flux tubes evolving in a penumbral “background” reproduces some properties of sunspot inhomogeneities, like its filamentation, its strong (Evershed-) outflows, and its uncombed geometry, but it encounters some problems in explaining the penumbral heat transport. Another model approach, which can explain the heat transport and long bright filaments, but fails to explain the Evershed flow, relies on elongated convective cells, either field-free as in the gappy penumbra or filled with horizontal magnetic field as in Danielson’s convective rolls. Such simplified models fail to give a consistent picture of all observational aspects, and it is clear that we need a more sophisticated description of the penumbra, that must result from simulations of radiative magneto-convection in inclined magnetic fields. First results of such simulations are discussed. The understanding of the small-scales will then be the key to understand the global structure and the large-scale stability of sunspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • C. Beck, A 3D sunspot model derived from an inversion of spectropolarimetric observations and its implications for the penumbral heating. Astron. Astrophys. 480, 825–838 (2008)

    Article  ADS  Google Scholar 

  • L.R. Bellot Rubio, The Fine Structure of the Penumbra: from Observations to Realistic Physical Models. ASP Conference Series, vol. 307 (2003), p. 301

  • L.R. Bellot Rubio, Sunspots as seen in polarized light. Rev. Mod. Astron. 17, 21–50 (2004)

    ADS  Google Scholar 

  • L.R. Bellot Rubio, H. Balthasar, M. Collados, R. Schlichenmaier, Field-aligned Evershed flows in the photosphere of a sunspot penumbra. Astron. Astrophys. 403, L47–L50 (2003)

    Article  ADS  Google Scholar 

  • L.R. Bellot Rubio, H. Balthasar, M. Collados, Two magnetic components in sunspot penumbrae. Astron. Astrophys. 427, 319–334 (2004)

    Article  ADS  Google Scholar 

  • L.R. Bellot Rubio, K. Langhans, R. Schlichenmaier, Multi-line spectroscopy of dark-cored penumbral filaments. Astron. Astrophys. 443, L7–L10 (2005)

    Article  ADS  Google Scholar 

  • L.R. Bellot Rubio, R. Schlichenmaier, A. Tritschler, Two-dimensional spectroscopy of a sunspot. III. Thermal and kinematic structure of the penumbra at 0.5 arcsec resolution. Astron. Astrophys. 453, 1117–1127 (2006)

    Article  ADS  Google Scholar 

  • L.R. Bellot Rubio, S. Tsuneta, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, J.C. del Toro Iniesta, Vector spectropolarimetry of dark-cored penumbral filaments with Hinode. Astrophys. J. Lett. 668, L91–L94 (2007)

    Article  ADS  Google Scholar 

  • L. Bharti, C. Joshi, S.N.A. Jaaffrey, Observations of dark lanes in umbral fine structure from the Hinode solar optical telescope: Evidence for magnetoconvection. Astrophys. J. Lett. 669, L57–L60 (2007)

    Article  ADS  Google Scholar 

  • J.M. Borrero, S.K. Solanki, L.R. Bellot Rubio, A. Lagg, S.K. Mathew, On the fine structure of sunspot penumbrae. I. A quantitative comparison of two semiempirical models with implications for the Evershed effect. Astron. Astrophys. 422, 1093–1104 (2004)

    Article  ADS  Google Scholar 

  • J.M. Borrero, A. Lagg, S.K. Solanki, M. Collados, On the fine structure of sunspot penumbrae. II. The nature of the Evershed flow. Astron. Astrophys. 436, 333–345 (2005)

    Article  ADS  Google Scholar 

  • J.M. Borrero, S.K. Solanki, A. Lagg, H. Socas-Navarro, B. Lites, On the fine structure of sunspot penumbrae. III. The vertical extension of penumbral filaments. Astron. Astrophys. 450, 383–393 (2006)

    Article  ADS  Google Scholar 

  • J.M. Borrero, L.R. Bellot Rubio, D.A.N. Müller, Flux tubes as the origin of net circular polarization in sunspot penumbrae. Astrophys. J. 666, L133–L136 (2007)

    Article  ADS  Google Scholar 

  • J.M. Borrero, B.W. Lites, S.K. Solanki, Evidence of magnetic field wrapping around penumbral filaments. Astron. Astrophys. 481, L13–L16 (2008)

    Article  ADS  Google Scholar 

  • J.M. Borrero, S.K. Solanki, Are there field-free gaps near τ=1 in sunspot penumbrae? Astrophys. J. 687, 668–677 (2008)

    Article  ADS  Google Scholar 

  • D. Cabrera Solana, L.R. Bellot Rubio, J.M. Borrero, J.-C. del Toro Iniesta, Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds. Astron. Astrophys. 477, 273–283 (2008)

    Article  ADS  Google Scholar 

  • R.E. Danielson, The structure of sunspot penumbras. II. Theoretical. Astrophys. J. 134, 289 (1961)

    Article  ADS  Google Scholar 

  • D. Degenhardt, Stationary fiphon flows in thin magnetic flux tubes. II. Astron. Astrophys. 248, 637 (1991)

    MATH  ADS  Google Scholar 

  • W. Deinzer, On the magneto-hydrostatic theory of sunspots. Astrophys. J. 141, 548–563 (1965)

    Article  MATH  ADS  Google Scholar 

  • J.C. del Toro Iniesta, L.R. Bellot Rubio, M. Collados, Cold, supersonic Evershed downflows in a sunspot. Astrophys. J. Lett. 549, L139–L142 (2001)

    Article  ADS  Google Scholar 

  • J. Evershed, Radial movement in sun-spots. Mon. Not. R. Astron. Soc. 69, 454–457 (1909)

    ADS  Google Scholar 

  • L. Gizon, Space. Sci. Rev. (2008, this issue)

  • H. Grosser, Zur Entstehung der Penumbra-Filamentierung von Sonnenflecken durch die Wirkung von Konvektionsrollen. PhD thesis, Universität Göttingen, 1991

  • T. Heinemann, Å. Nordlund, G.B. Scharmer, H.C. Spruit, MHD simulations of penumbra fine structure. Astrophys. J. 669, 1390–1394 (2007)

    Article  ADS  Google Scholar 

  • K. Ichimoto, R.A. Shine, B. Lites, M. Kubo, T. Shimizu, Y. Suematsu, S. Tsuneta, Y. Katsukawa, T.D. Tarbell, A.M. Title, S. Nagata, T. Yokoyama, M. Shimojo, Fine-scale structures of the Evershed effect observed by the solar optical telescope aboard Hinode. Publ. Astron. Soc. Jpn. 59, 593 (2007a)

    Google Scholar 

  • K. Ichimoto, Y. Suematsu, S. Tsuneta, Y. Katsukawa, T. Shimizu, R.A. Shine, T.D. Tarbell, A.M. Title, B.W. Lites, M. Kubo, S. Nagata, Twisting motions of sunspot penumbral filaments. Science 318, 1597 (2007b)

    Article  ADS  Google Scholar 

  • K. Ichimoto, S. Tsuneta, Y. Suematsu, Y. Katsukawa, T. Shimizu, B.W. Lites, M. Kubo, T.D. Tarbell, R.A. Shine, A.M. Title, S. Nagata, Net circular polarization of sunspots in high spatial resolution. Astron. Astrophys. 481, L9–L12 (2008)

    Article  ADS  Google Scholar 

  • K. Jahn, Current sheet as a diagnostic for the subphotospheric structure of a SPOT. Astron. Astrophys. 222, 264–292 (1989)

    ADS  Google Scholar 

  • K. Jahn, in Physical Models of Sunspots, ed. by B. Schmieder, J.C. del Toro Iniesta, M. Vazquez. ASP Conf. Ser., vol. 118: 1st Advances in Solar Physics Euroconference. Advances in Physics of Sunspots, 1997, p. 122

  • K. Jahn, H.U. Schmidt, Thick penumbra in a magnetostatic sunspot model. Astron. Astrophys. 290, 295–317 (1994)

    ADS  Google Scholar 

  • J. Jurcak, L.R. Bellot Rubio, Penumbral models in the light of Hinode spectropolarimetric observations. Astron. Astrophys. 481, L17–L20 (2008)

    Article  ADS  Google Scholar 

  • J. Jurcak, L.R. Bellot Rubio, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, T. Shimizu, Y. Suematsu, T.D. Tarbell, A.M. Title, S. Tsuneta, The analysis of penumbral fine structure using an advanced inversion technique. Publ. Astron. Soc. Jpn. 59, S601–S606 (2007)

    ADS  Google Scholar 

  • J.R. Kuhn, H. Morgan, Osmotically Driven Neutral Sunspot Winds, Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ed. by J. Leibacher, R.F. Stein, H. Uitenbroek. Astronomical Society of the Pacific Conference Series, vol. 354, December 2006, pp. 230–+

  • M. Landolfi, E. Landi degl’Innocenti, Net circular polarization in magnetic spectral lines produced by velocity gradients: Some analytical results. Sol. Phys. 164, 191–202 (1996)

    Article  ADS  Google Scholar 

  • K. Langhans, G.B. Scharmer, D. Kiselman, M.G. Löfdahl, T.E. Berger, Inclination of magnetic fields and flows in sunspot penumbrae. Astron. Astrophys. 436, 1087–1101 (2005)

    Article  ADS  Google Scholar 

  • K. Langhans, G.B. Scharmer, D. Kiselman, M.G. Löfdahl, Observations of dark-cored filaments in sunspot penumbrae. Astron. Astrophys. 464, 763–774 (2007)

    Article  ADS  Google Scholar 

  • V. Martínez Pillet, Spectral signature of uncombed penumbral magnetic fields. Astron. Astrophys. 361, 734–742 (2000)

    ADS  Google Scholar 

  • D.A.N. Müller, R. Schlichenmaier, O. Steiner, M. Stix, Spectral signatures of magnetic flux tubes in sunspot penumbrae. Astron. Astrophys. 393, 305–319 (2002)

    Article  ADS  Google Scholar 

  • D.A.N. Müller, R. Schlichenmaier, G. Fritz, C. Beck, The multi-component field topology of sunspot penumbrae. A diagnostic tool for spectropolarimetric measurements. Astron. Astrophys. 460, 925–933 (2006)

    Article  ADS  Google Scholar 

  • P. Maltby, On the velocity field in sunspots. Astrophys. Norvegica 8, 205 (1964)

    ADS  Google Scholar 

  • F. Meyer, H.U. Schmidt, Magnetisch ausgerichtete Strömungen zwischen Sonnenflecken. Zeitschrift für angewandte Mathematik und Mechanik 48, T218 (1968)

    ADS  Google Scholar 

  • F. Meyer, N.O. Weiss, H.U. Schmidt, The stability of sunspots. Mon. Not. R. Astron. Soc. 179, 741 (1977)

    ADS  Google Scholar 

  • E.N. Parker, Sunspots and the physics of magnetic flux tubes. IX Umbral dots and longitudinal overstability. Astrophys. J. 234, 333–347 (1979)

    Article  ADS  Google Scholar 

  • V.J. Pizzo, Numerical modeling of solar magnetostatic structures bounded by current sheets. Astrophys. J. 365, 764–777 (1990)

    Article  ADS  Google Scholar 

  • M. Rempel, M. Schüssler, M. Knölker, Radiative MHD simulation of sunspot structure. Astrophys. J. (2008, accepted)

  • R. Rezaei, R. Schlichenmaier, C. Beck, L.R. Bellot Rubio, The flow field in the sunspot canopy. Astron. Astrophys. 454, 975–982 (2006)

    Article  ADS  Google Scholar 

  • T. Rimmele, Plasma flows observed in magnetic flux concentrations and sunspot fine structure using adaptive optics. Astrophys. J. 604, 906–923 (2004)

    Article  ADS  Google Scholar 

  • T. Rimmele, On the relation between umbral dots, dark-cored filaments, and light bridges. Astrophys. J. 672, 684–695 (2008)

    Article  ADS  Google Scholar 

  • T. Rimmele, J. Marino, The Evershed flow: Flow geometry and its temporal evolution. Astrophys. J. 646, 593–604 (2006)

    Article  ADS  Google Scholar 

  • B. Ruiz Cobo, L.R. Bellot Rubio, Heat transfer in sunspot penumbrae. Origin of dark-cored penumbral filaments. Astron. Astrophys. 488, 749–756 (2008)

    Article  MATH  ADS  Google Scholar 

  • A. Sainz Dalda, L.R. Bellot Rubio, Detection of sea-serpent field lines in sunspot penumbrae. Astron. Astrophys. 481, L21–L24 (2008)

    Article  ADS  Google Scholar 

  • J. Sanchez Almeida, B.W. Lites, Observation and Interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots. Astrophys. J. 398, 359–374 (1992)

    Article  ADS  Google Scholar 

  • G.B. Scharmer, H.C. Spruit, Magnetostatic penumbra models with field-free gaps. Astron. Astrophys. 460, 605–615 (2006)

    Article  ADS  Google Scholar 

  • G.B. Scharmer, B.V. Gudiksen, D. Kiselman, M.G. Löfdahl, L.H.M.R. van der Voort, Dark cores in sunspot penumbral filaments. Nature 420, 151 (2002)

    Article  ADS  Google Scholar 

  • G.B. Scharmer, T. Heinemann, A. Nordlund, Convection and the origin of Evershed flows in sunspot penumbrae. Astrophys. J. 677, L149–L152 (2008)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, Penumbral fine structure: Theoretical understanding. Astron. Nachr. 323, 303–308 (2002)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, The Sunspot Penumbra: New Developments, ed. by A. Pevtsov and H. Uitenbroek. ASP Conf. Ser., vol. 286: Current theoretical models and future high resolution solar observations, 2003, pp. 211–226

  • R. Schlichenmaier, M. Collados, Spectropolarimetry in a sunspot penumbra. Spatial dependence of stokes asymmetries in Fe I 1564.8 nm. Astron. Astrophys. 381, 668–682 (2002)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, W. Schmidt, Flow geometry in a sunspot penumbra. Astron. Astrophys. 358, 1122–1132 (2000)

    ADS  Google Scholar 

  • R. Schlichenmaier, S.K. Solanki, On the heat transport in a sunspot penumbra. Astron. Astrophys. 411, 257–262 (2003)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, K. Jahn, H.U. Schmidt, A dynamical model for the penumbral fine structure and the Evershed effect in sunspots. Astrophys. J. Lett. 493, L121 (1998a)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, K. Jahn, H.U. Schmidt, Magnetic flux tubes evolving in sunspots. A model for the penumbral fine structure and the Evershed flow. Astron. Astrophys. 337, 897–910 (1998b)

    ADS  Google Scholar 

  • R. Schlichenmaier, D.A.N. Müller, O. Steiner, M. Stix, Net circular polarization of sunspot penumbrae. Symmetry breaking through anomalous dispersion. Astron. Astrophys. 381, L77–L80 (2002)

    Article  ADS  Google Scholar 

  • R. Schlichenmaier, L.R. Bellot Rubio, A. Tritschler, Two-dimensional spectroscopy of a sunspot. II. Penumbral line asymmetries. Astron. Astrophys. 415, 731–737 (2004)

    Article  ADS  Google Scholar 

  • W. Schmidt, R. Schlichenmaier, Small-scale flow field in a sunspot penumbra. Astron. Astrophys. 364, 829–834 (2000)

    ADS  Google Scholar 

  • M. Schüssler, M. Rempel, The dynamical disconnection of sunspots from their magnetic roots. Astron. Astrophys. 441, 337–346 (2005)

    Article  ADS  Google Scholar 

  • M. Schüssler, A. Vögler, Magnetoconvection in a Sunspot Umbra. Astrophys. J. Lett. 641, L73–L76 (2006)

    Article  ADS  Google Scholar 

  • M. Sobotka, P. Sütterlin, Fine structure in sunspots. IV. Penumbral grains in speckle reconstructed images. Astron. Astrophys. 380, 714–715 (2001)

    Article  ADS  Google Scholar 

  • H. Socas-Navarro, V. Martinez Pillet, M. Sobotka, M. Vazquez, The thermal and magnetic structure of umbral dots form the inversion of high-resolution full Stokes Observations. Astrophys. J. 614, 448–456 (2004)

    Article  ADS  Google Scholar 

  • S.K. Solanki, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153–286 (2003)

    Article  ADS  Google Scholar 

  • S.K. Solanki, C.A.P. Montavon, Uncombed fields as the source of the broad-band circular polarization of sunspots. Astron. Astrophys. 275, 283 (1993)

    ADS  Google Scholar 

  • S.K. Solanki, I. Rüedi, Spatial and temporal fluctuations in sunspots derived from MDI data. Astron. Astrophys. 411, 249–256 (2003)

    Article  ADS  Google Scholar 

  • S.K. Solanki, I. Rueedi, W. Livingston, Infrared lines as probes of solar magnetic features. V – The magnetic structure of a simple sunspot and its canopy. Astron. Astrophys. 263, 312 (1992)

    ADS  Google Scholar 

  • H.C. Spruit, G.B. Scharmer, Fine structure, magnetic field and heating of sunspot penumbrae. Astron. Astrophys. 447, 343–354 (2006)

    Article  ADS  Google Scholar 

  • O. Steiner, The formation of asymmetric Stokes V profiles in the presence of a magnetopause. Sol. Phys. 196, 245–268 (2000)

    Article  ADS  Google Scholar 

  • P. Sütterlin, L.R. Bellot Rubio, R. Schlichenmaier, Asymmetrical appearance of dark-cored filaments in sunspot penumbrae. Astron. Astrophys. 424, 1049–1053 (2004)

    Article  ADS  Google Scholar 

  • J.H. Thomas, Siphon flows in isolated magnetic flux tubes. Astrophys. J. 333, 407–419 (1988)

    Article  ADS  Google Scholar 

  • J.H. Thomas, Flows along penumbral flux tubes in sunspots. Instability of super-Alfvénic, serpentine solutions. Astron. Astrophys. 440, L29–L32 (2005)

    Article  ADS  Google Scholar 

  • J.H. Thomas, B. Montesinos, Siphon flows n isolated magnetic flux tubes. IV Critical flows with standing tube shocks. Astrophys. J. 375, 404–413 (1991)

    Article  ADS  Google Scholar 

  • A.M. Title, Z. A Frank, R.A. Shine, T.D. Tarbell, K.P. Topka, G. Scharmer, W. Schmidt, On the magnetic and velocity field geometry of simple sunspots. Astrophys. J. 403, 780–796 (1993)

    Article  ADS  Google Scholar 

  • A. Tritschler, R. Schlichenmaier, L.R. Bellot Rubio, the KAOS Team, Two-dimensional spectroscopy of a sunspot. I. Properties of the penumbral fine structure. Astron. Astrophys. 415, 717–729 (2004)

    Article  ADS  Google Scholar 

  • A. Tritschler, D.A.N. Müller, R. Schlichenmaier, H.J. Hagenaar, Fine structure of the net circular polarization in a sunspot penumbra. Astrophys. J. Lett. 671, L85–L88 (2007)

    Article  ADS  Google Scholar 

  • E. Wiehr, The origin of the Evershed asymmetry. Astron. Astrophys. 298, L17–L20 (1995)

    ADS  Google Scholar 

  • N.O. Weiss, Magnetic flux tubes and convection in the Sun. Mon. Not. R. Astron. Soc. 128, 225 (1964)

    ADS  Google Scholar 

  • C. Westendorp Plaza, J.C. del Toro Iniesta, B. Ruiz Cobo, V. Martínez Pillet, Optical tomography of a sunspot. III. Velocity stratification and the Evershed effect. Astrophys. J. 547, 1148–1158 (2001a)

    Article  ADS  Google Scholar 

  • C. Westendorp Plaza, J.C. del Toro Iniesta, B. Ruiz Cobo, V. Martínez Pillet, B.W. Lites, A. Skumanich, Optical tomography of a sunspot. II. Vector magnetic field and temperature stratification. Astrophys. J. 547, 1130–1147 (2001b)

    Article  ADS  Google Scholar 

  • V. Zakharov, J. Hirzberger, T.L. Riethmüller, S.K. Solanki, P. Kobel, Evidence of convective rolls in a sunspot penumbra. Astron. Astrophys. 488(2), L17–L20 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Schlichenmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlichenmaier, R. Sunspots: From Small-Scale Inhomogeneities Towards a Global Theory. Space Sci Rev 144, 213–228 (2009). https://doi.org/10.1007/s11214-008-9465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9465-6

Keywords

Navigation