Skip to main content
Log in

Modeling and Simulating Flowing Plasmas and Related Phenomena

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Simulation has become a valuable tool that compliments more traditional methods used to understand solar system plasmas and their interactions with planets, moons and comets. The three popular simulation approaches to studying these interactions are presented. Each approach provides valuable insight to these interactions. To date no one approach is capable of simulating the whole interaction region from the collisionless to the collisional regimes. All three approaches are therefore needed. Each approach has several implicit physical assumptions as well as several numerical assumptions depending on the scheme used. The magnetohydrodynamic (MHD), test-particle/Monte-Carlo and hybrid models used in simulating flowing plasmas are described. Special consideration is given to the implicit assumptions underlying each model. Some of the more common numerical methods used to implement each model, the implications of these numerical methods and the resulting limitations of each simulation approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005)

    Article  ADS  Google Scholar 

  • T. Bagdonat, U. Motschmann, From a weak to a strong comet—3D global hybrid simulation studies. Earth, Moon Planets 90, 305–321 (2002)

    Article  ADS  Google Scholar 

  • F. Bagenal, T.E. Cravens, J.G. Luhmann, R.L. McNutt, A.F. Cheng, Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), p. 523

    Google Scholar 

  • D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • K. Baumgartel, K. Sauer, Interaction of a magnetized plasma stream with an immobile ion cloud. Ann. Geophys. 10, 763 (1992)

    ADS  Google Scholar 

  • R. Bauske, A.F. Nagy, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, J.G. Luhmann, A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization and charge exchange. J. Geophys. Res. 103, 23,625 (1998)

    Article  ADS  Google Scholar 

  • C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulations (McGraw-Hill, USA, 1985)

    Google Scholar 

  • C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (Taylor & Francis, London, 2004)

    Google Scholar 

  • A. Bößwetter, T. Bagdonat, U. Motschmann, K. Sauer, Plasma boundaries at Mars: A 3-D simulation study. Ann. Geophys. 22, 4363–4379 (2004)

    ADS  Google Scholar 

  • J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code, in Proc. Fourth Conf. Num. Sim. Plasmas, Naval Res. Lab., Wash., D.C., 2–3 November 1970, pp. 3–67

  • S.H. Brecht, J.F. Ferrante, Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars. J. Geophys. Res. 96, 11,209–11,220 (1991)

    Article  ADS  Google Scholar 

  • S.H. Brecht, S.A. Ledvina, The solar wind interaction with the Martian ionosphere/atmosphere. Space Sci. Rev. 126, 15–38 (2006). doi:10.1007/s11214-006-9084-z

    Article  ADS  Google Scholar 

  • S.H. Brecht, V.A. Thomas, Multidimensional simulations using hybrid particle codes. Comput. Phys. Commun. 48, 135–143 (1988)

    Article  ADS  Google Scholar 

  • S.H. Brecht, J. Lyon, J.A. Fedder, K. Hain, A simulation study of east-west IMF effects on the magnetosphere. Geophys. Res. Lett. 8(4), 397–400 (1981)

    Article  ADS  Google Scholar 

  • S.H. Brecht, J.G. Luhmann, D.J. Larson, Simulation of the Saturnian magnetospheric interaction with Titan. J. Geophys. Res. 105, 13,119–13,130 (2000)

    Article  ADS  Google Scholar 

  • S.H. Brecht, I. de Pater, D.J. Larson, M.E. Pesses, Modification of the jovian radiation belts by Shoemaker-Levy 9: An explanation of the data. Icarus 151(1), 25–38 (2001)

    Article  ADS  Google Scholar 

  • D.A. Bryant, Ion release experiments in the solar wind. Plasma Phys. Control. Fusion 27, 1369 (1985)

    Article  ADS  Google Scholar 

  • O. Buneman, Time-reversible difference procedures. J. Comput. Phys. 1, 517 (1967)

    Article  MATH  ADS  Google Scholar 

  • A. Calder et al., Validating astrophysical simulation codes. Comput. Sci. Eng. 6, 10 (2004)

    Article  Google Scholar 

  • F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: Nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi:10.1029/2006JE002818

    Article  Google Scholar 

  • T.E. Cravens, Ion distribution functions in the vicinity of Comet Giacobini-Zinner. Geophys. Res. Lett. 13, 276 (1986)

    Article  ADS  Google Scholar 

  • T.E. Cravens, A magnetohydrodynamical model of the inner coma of comet Halley. J. Geophys. Res. 94, 15025 (1989)

    Article  ADS  Google Scholar 

  • T.E. Cravens, Physics of Solar System Plasmas (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • T.E. Cravens, C.J. Lindgren, S.A. Ledvina, A two-dimensional multifluid MHD model of Titan’s plasma environment. Planet. Space Sci. 46, 1193 (1998)

    Article  ADS  Google Scholar 

  • T.E. Cravens, A. Hoppe, S.A. Ledvina, S. McKenna-Lawlor, Pickup ions near Mars associated with escaping oxygen atoms. J. Geophys. Res. 107(A8), 1170 (2002). doi:10.1029/2001JA000125

    Article  Google Scholar 

  • W. Dai, P.R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494, 317 (1998)

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Pluto’s kinetic interaction with the solar wind. Geophys. Res. Lett. 31, L04807 (2004). doi:1029/2003GL018122

    Article  Google Scholar 

  • C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659 (1988)

    Article  ADS  Google Scholar 

  • J.A. Fedder, J.G. Lyon, The solar wind-magnetosphere-ionosphere current-voltage relationship. Geophys. Res. Lett. 14, 880–883 (1987)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, Gaskinetic Theory (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  • T.I. Gombosi, Physics of the Space Environment (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • T.I. Gombosi, D.L. De Zeeuw, R.M. Haberli, K.G. Powell, Three-dimensional multiscale MHD model of cometary plasma environments. J. Geophys. Res. 101, 15233 (1996)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, D.L. De Zeeuw, C.P.T. Groth, K.G. Powell, P. Song, The length of the magnetotail for northward IMF: Results of 3D MHD simulations. Phys. Space Plasmas 15, 121–128 (1998)

    Google Scholar 

  • C.P.T. Groth, D.L. DeZeeuw, T.I. Gombosi, K.G. Powell, A parallel adaptive 3D MHD scheme for modeling coronal and solar wind plasma flows. Space Sci. Rev. 87, 193 (1999)

    Article  ADS  Google Scholar 

  • H. Gunell, M. Holmström, S. Barabash, E. Kallio, P. Janhunen, A.F. Nagy, Y. Ma, Planetary ENA imaging: Effects of different interaction models for Mars. Planet. Space Sci. 54, 117–131 (2006)

    Article  ADS  Google Scholar 

  • K. Hain, Behavior of ionized plasma in the high latitude topside ionosphere. NRL Memorandum Report 3713 (1977), p. 1

  • K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, C.P.T. Groth, K.G. Powell, A 3D global MHD simulation of Saturn’s magnetosphere. Adv. Space Res. 26(10), 1681–1690 (2000)

    Article  ADS  Google Scholar 

  • K.C. Hansen et al., Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi:10.1029/2005GL022835

    Article  Google Scholar 

  • D.S. Harned, Quasineutral hybrid simulation of macroscopic plasma phenomena. J. Comput. Phys. 47, 452–462 (1982)

    Article  MATH  ADS  Google Scholar 

  • E.M. Harnett, R.M. Winglee, P.A. Delemere, Three-dimensional multi-fluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations. Geophys. Res. Lett. 32, L19104 (2005). doi:10.1029/2005GL023178

    Article  ADS  Google Scholar 

  • R.E. Hartle et al., Preliminary interpretation of titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Geophys. Res. Lett. 33, L08201 (2006). doi:10.1029/2005GL024817

    Article  Google Scholar 

  • L. Hatton, A. Roberts, IEEE Trans. Softw. Eng. 20, 785 (1994)

    Article  Google Scholar 

  • C. Hirsch, Numerical Computation of Internal and External Flows, vol. 1 (Wiley, New York, 1989)

    Google Scholar 

  • R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristor ans Philadelphia, 1988). ISBN 0-85274-392-0

    MATH  Google Scholar 

  • J. Hubba, Hall magnetohydrodynamics – A tutorial, Space Plasma Simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 166–192 (2003)

    Article  ADS  Google Scholar 

  • W.-H. Ip et al., Pluto’s ionospheric models and solar wind interaction. Adv. Space Res. 26, 1559–1563 (2000)

    Article  ADS  Google Scholar 

  • Y.-D. Jia, M.R. Combi, K.C. Hansen, T.I. Gombosi, A global model of cometary tail disconnection events triggered by solar wind magnetic variations. J. Geophys. Res. 112, A05223 (2007). doi:10.1029/2006JA012175

    Article  Google Scholar 

  • K. Kabin, T.I. Gombosi, D.L. De Zeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143, 397–406 (2000)

    Article  ADS  Google Scholar 

  • E. Kallio, J.G. Luhmann, S. Barabash, Charge exchange near Mars: the solar wind absorption and energetic neutral atom production. J. Geophys. Res. 102, 22183–22197 (1997)

    Article  ADS  Google Scholar 

  • E. Kallio, H. Koskinnen, A test particle simulation of the motion of oxygen ions and solar wind protons near Mars. J. Geophys. Res. 104, 557–579 (1999)

    Article  ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J. Geophys. Res. 106, 5617–5634 (2001)

    Article  ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Ion escape from Mars in a quasineutral hybrid model. J. Geophys. Res. 107, A3 (2002)

    Article  Google Scholar 

  • E. Kallio, P. Janhunen, Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett. 30, 17,1877 (2003). doi:10.1029/2003GL017842

    Article  Google Scholar 

  • E. Kallio, I. Sillanpää, P. Janhunen, Titan in subsonic and supersonic flow. Geophys. Res. Lett. 31, L15703 (2004). doi:10.1029/2004GL020344

    Article  ADS  Google Scholar 

  • E. Kallio, Formation of the lunar wake in quasi-neutral hybrid model. Geophys. Res. Lett. 32, L06107 (2005). doi:10.1029/2004GL021989

    Article  Google Scholar 

  • E. Kallio, R. Järvinen, P. Janhunen, Venus-Solar wind interaction: Asymmetries and the escape of O+ ions. Planet. Space Sci. 54, 1472–1481 (2006)

    Article  ADS  Google Scholar 

  • H. Karimabadi, D. Krauss-Varban, J.D. Huba, H.X. Vu, On magnetic reconnection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD simulations. J. Geophys. Res. 109, A09205 (2004). doi:10.1029/2004JA010478

    Article  Google Scholar 

  • K. Kecskemety, T.E. Cravens, Pickup ions at Pluto. Geophys. Res. Lett. 20, 543 (1993)

    Article  ADS  Google Scholar 

  • C.D. Kimmel, J.G. Luhmann, J.L. Phillips, J.A. Fedder, Characteristics of cometary pickup-up ions in a global model of Giacobini-Zinner. J. Geophys. Res. 92, 8536 (1987)

    Article  ADS  Google Scholar 

  • N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)

    Google Scholar 

  • D. Krauss-Varban, From theoretical foundation to invaluable research tool: Modern hybrid simulations, in Proceedings of the 7th International Symposium for Space Simulations (ISSI 7), Kyoto University, 2005, pp. 15–18

  • C.N. Keller, T.E. Cravens, L. Gan, One-dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan. J. Geophys. Res. 99, 6511 (1994)

    Article  ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Planet. Space Sci. 54, 1445–1456 (2006)

    Article  ADS  Google Scholar 

  • J.N. Lcboeuf, T. Tajima, C.F. Kennel, J.M. Dauhon, Glohal simulations of the time-dependent niagnetosphcrc. Geophys. Res. Lett. 5, 609 (1978)

    Article  ADS  Google Scholar 

  • S.A. Ledvina, T.E. Cravens, A three-dimensional MHD model of plasma flow around Titan. Planet. Space Sci. 46, 1175 (1998)

    Article  ADS  Google Scholar 

  • S.A. Ledvina, T.E. Cravens, A. Salman, K. Kecskeméty, Ion trajectories in Saturn’s magnetosphere near Titan. Adv. Space Res. 26, 1691 (2000)

    Article  ADS  Google Scholar 

  • S.A. Ledvina, J.G. Luhmann, S.H. Brecht, T.E. Cranvens, Titan’s induced magnetosphere. Adv. Space Res. 33, 2092 (2004a)

    Article  ADS  Google Scholar 

  • S.A. Ledvina, S.H. Brecht, J.G. Luhmann, J. Geophys. Res. 31 (2004b). CiteID L17S10

  • S.A. Ledvina, T.E. Cravens, K. Kecskemety, Ion distributions in Saturn’s magnetosphere near Titan, J. Geophys. Res. 110 (2005). CiteID A06211

  • A. Lipatov, The Hybrid Multiscale Simulation Technology (Springer, Berlin, 2002)

    MATH  Google Scholar 

  • Y. Liu, A.F. Nagy, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, The solar wind interaction with Mars: Results of three-dimensional three-species MHD studies. Adv. Space Res. 27, 1837 (2001)

    Article  ADS  Google Scholar 

  • G. Lu, P.H. Reiff, M.R. Hairston, R.A. Heelis, J.L. Karty, Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field. J. Geophys. Res. 94, 13447 (1989)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, S.A. Ledvina, J.G. Lyon, C.T. Russell, Planet. Space Sci. 54, 1457–1471 (2006)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, Titan’s ion exospheric wake: A natural ion mass spectrometer? J. Geophys. Res. 101, 29,387 (1996)

    ADS  Google Scholar 

  • J.G. Luhmann, J.A. Fedder, D. Winske, A test particle model of pickup ions at comet Halley. J. Geophys. Res. 93, 7532 (1988)

    Article  ADS  Google Scholar 

  • J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66, 1333–1350 (2004)

    Article  ADS  Google Scholar 

  • Y.J. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, J. Clark, K.C. Hansen, 3-D Global MHD model Prediction of the first close flyby of Titan by Cassini. Geophys. Res. Let. 31, L22803 (2004a)

    Article  ADS  Google Scholar 

  • Y.J. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004b). doi:10.1029/2003JA010367

    Article  Google Scholar 

  • Y. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, K.C. Hansen, J.-E. Wahlund, F.J. Crary, A.J. Coates, M.K. Dougherty, Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207 (2006). doi:10.1029/2005JA011481

    Article  Google Scholar 

  • Y. Ma et al., 3D global multi-species Hall-MHD simulation of the Cassini T9 flyby. Geophys. Res. Lett. (2007). doi:10.1029/2007GL031627

    Google Scholar 

  • Y. Ma, A.F. Nagy, K. Altwegg, T. Breus, M.R. Combi, T.E. Cravens, E. Kallio, S.A. Ledvina, J.G. Luhmann, S. Miller, A.J. Ridley, D.F. Strobel, Plasma flow and related phenomena in planetary aeronomy. Space Sci. Rev. (2008). doi:10.1007/s11214-008-9389-1

  • P. MacNeice, Particle-mesh techniques (1996). http://citeseer.ist.psu.edu/496901.html

  • F. Mackay, R. Marchand, K. Kabin, Divergence-free magnetic field interpolation and charged particle trajectory integration. J. Geophys. Res. 111, A06208 (2006). doi:10.1029/2005JA011382

    Article  Google Scholar 

  • A.P. Matthews, Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. J. Comput. Phys. 112, 102–116 (1994)

    Article  MATH  ADS  Google Scholar 

  • M.L. McKenzie, T.E. Cravens, G. Ye, Theoretical calculations of ion acceleration in the vicinity of comet Giacobini-Zinner. J. Geophys. Res. 99, 6585 (1994)

    Article  ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 433–444 (2005)

    ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, J.-E. Wahlund, P. Canu, W.S. Kurth, D. Gurnett, A.P. Matthews, C. Bertucci, A. Law, M.K. Doughert, The plasma environment in the wake of Titan from hybrid simulation—a case study. Geophys. Res. Lett. (2007, submitted)

  • Neubauer et al., Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, 10220 (2006)

    Article  Google Scholar 

  • D.R. Nicholson, Introduction to Plasma Theory (Wiley, New York, 1983)

    Google Scholar 

  • N. Omidi, X. Blanco-Cano, C.T. Russell, H. Karimabadi, M. Acuna, Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. J. Geophys. Res. 107, A12 (2002)

    Article  Google Scholar 

  • A. Otto, Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD—constant and current dependent resistivity models. J. Geophys. Res. 106(A3), 3751–3758 (2001)

    Article  ADS  Google Scholar 

  • D.E. Post, L.G. Votta, Computational science demands a new paradigm. Phys. Today 58, 35 (2005)

    Article  ADS  Google Scholar 

  • K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE Report, No. 94-24, Langley, VA, 1994

  • K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. DeZeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn. (Cambridge Univ. Press, Cambridge, 1993)

    Google Scholar 

  • P. Puhl-Quinn, T.E. Cravens, One-dimensional hybrid simulations of the diamagnetic cavity boundary region of comet Halley. J. Geophys. Res. 100, 21631 (1995)

    Article  ADS  Google Scholar 

  • J. Raeder, Global geospace modeling: Tutorial and review. Space plasma simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 84 (2001)

  • J. Raeder, Global Magnetohydrodynamics – A tutorial, space plasma simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 212 (2003)

    Article  ADS  Google Scholar 

  • J. Ramshaw, A method for enforcing the solenoidal condition on magnetic fields in numerical calculations. J. Comput. Phys. 52, 592 (1983)

    Article  MATH  ADS  Google Scholar 

  • K.V. Roberts, J.B. Taylor, Magnetohydrodynamic equations for finite Larmor radius. Phys. Rev. Lett. 8, 197 (1962)

    Article  MATH  ADS  Google Scholar 

  • K. Sauer, K. Baumgartel, I. Axnas, N. Brenning, A fluid simulation of the AMPTE solar wind lithium release. Adv. Space Res. 10, 95 (1990)

    Article  ADS  Google Scholar 

  • K. Sauer, A. Bogdanov, K. Baumgartel, Evidence of an ion composition boundary (protonopause) in bi-ion fluid simulations of solar wind mass loading. Geophys. Res. Lett. 21, 2255 (1994)

    Article  ADS  Google Scholar 

  • K. Sauer, E. Dubinin, K. Baumgartel, Nonlinear MHD waves and discontinuities in the Martian magnetosheath: Observations and 2D bi-ion MHD simulations. Earth Planets Space 50, 793 (1998)

    ADS  Google Scholar 

  • D. Schriver, J.-N. Leboeuf, M. Ashour-Abdalla, M. El-Alaoui, J.-M. Bosqued, V. Sotnikov, Loading experimental velocity distributions into particle-in-cell simulation of space and fusion plasmas. J. Plasma Phys. 72, 949 (2006)

    Article  ADS  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, New York, 2000)

    Google Scholar 

  • I. Sillanpää, E. Kallio, R. Jarvinen, P. Janhunen, Oxygen ions at Titan’s exobase in a Voyager 1–type interaction from a hybrid simulation. J. Geophys. Res. 112, A12205 (2007). doi:10.1029/2007JA012348

    Article  ADS  Google Scholar 

  • H. Shimazu, Three-dimensional hybrid simulation of magnetized plasma flow around an obstacle. Earth Planets Space 51, 383–393 (1999)

    ADS  Google Scholar 

  • H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Venus. J. Geophys. Res. 93, 11263 (1988)

    Article  ADS  Google Scholar 

  • H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars. J. Geophys. Res. 94, 6506 (1989)

    Article  ADS  Google Scholar 

  • S. Simon, A. Bößwetter, U. Motschmann, K.H. Glassmeier, Plasma environment of Titan: A 3-D hybrid simulation study. Ann. Geophys. 24, 1113–1135 (2006a)

    ADS  Google Scholar 

  • S. Simon, T. Bagdonat, U. Motschmann, K.-H. Glassmeier, Plasma environment of magnetized asteroids: A 3D hybrid simulation study. Ann. Geophys. 24, 407–414 (2006b)

    Article  ADS  Google Scholar 

  • G. Sod, Numerical Methods in Fluid Dynamics (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  • K. Szego et al., Physics of mass-loaded plasmas. Space Science Rev. 94, 429–671 (2000)

    Article  ADS  Google Scholar 

  • T. Tanaka, Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme. J. Geophys. Res. 98, 17251 (1993)

    Article  ADS  Google Scholar 

  • T. Tanaka, Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling process. J. Geophys. Res. 100, 12057 (1995)

    Article  ADS  Google Scholar 

  • T. Tanaka, Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets. Earth Planets Space 50, 259 (1998)

    ADS  Google Scholar 

  • T. Tanaka, K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation. J. Geophys. Res. 102, 19,805 (1997)

    ADS  Google Scholar 

  • N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause. J. Geophys. Res. 107(A12), 1471 (2002). doi:10.1029/2001JA009224

    Article  Google Scholar 

  • G. Tóth, The div B=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • G. Tóth, D. Odstrcil, Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128, 82 (1996)

    Article  MATH  ADS  Google Scholar 

  • G. Tóth, P.L. Roe, Divergence and curl-preserving prolongation and restriction formulas. J. Comput. Phys. 180, 736 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P. Trávníček, P. Hellinger, D. Schriver, S.D. Bale, Structure of the lunar wake: Two-dimensional global hybrid simulations. Geophys. Res. Lett. 32, L06102 (2005). doi:10.1029/2004GL022243

    Article  Google Scholar 

  • P. Trávnìček, P. Hellinger, D. Schriver, Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophys. Res. Lett. 34, L05104 (2007). doi:10.1029/2006GL028518

    Article  Google Scholar 

  • W.-L. Tseng, W.-H. Ip, A. Kopp, Exospheric heating by pickup ions at Titan. Adv. Space Res. 42, 54–60 (2008)

    Article  ADS  Google Scholar 

  • M.S. Voigt, Time-dependent MHD simulations for cometary plasma. Astron. Astrophys. 210, 433 (1989)

    MATH  ADS  Google Scholar 

  • R.M. Winglee, Ion cyclotron and heavy ion effects on reconnection in a global magnetotail. J. Geophys. Res. 109, A09206 (2004). doi:10.1029/2004JA010385

    Article  Google Scholar 

  • R.M. Winglee, E. Harnett, A. Stickle, J. Porter, Multiscale/multifluid simulations of flux ropes at the magnetopause within a global magnetospheric model. J. Geophys. Res. 113, A02209 (2008). doi:10.1029/2007JA012653

    Article  Google Scholar 

  • D. Winske, N. Omidi, A nonspecialist’s guide to kinetic simulations of space plasmas. J. Geophys. Res. 101(A8), 17,287–17,303 (1996)

    Article  ADS  Google Scholar 

  • D. Winske, L. Yin, N. Omidi, H. Karimabadi, K. Quest, Hybrid simulation codes: Past, present and future – A tutorial. Space Plasma Simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 136–165 (2003)

    Article  ADS  Google Scholar 

  • K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Propagat 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ledvina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledvina, S.A., Ma, YJ. & Kallio, E. Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Sci Rev 139, 143–189 (2008). https://doi.org/10.1007/s11214-008-9384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9384-6

Keywords

Navigation