Skip to main content

Advertisement

Log in

Acceleration of Solar-Energetic Particles by Shocks

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Our current understanding of the acceleration of solar-energetic particles is reviewed. The emphasis in this paper is on analytic theory and numerical modeling of the physics of diffusive shock acceleration. This mechanism naturally produces an energy spectrum that is a power law over a given energy interval that is below a characteristic energy where the spectrum has a break, or a rollover. This power law is a common feature in the observations of all types of solar-energetic particles, and not necessarily just those associated with shock waves (e.g. events associated with impulsive solar flares which are often described in terms of resonant stochastic acceleration). Moreover, the spectral index is observed to have remarkably little variability from one event to the next (about 50%). Any successful acceleration mechanism must be able to produce this feature naturally and have a resulting power-law index that does not depend on physical parameters that are expected to vary considerably. Currently, only diffusive shock acceleration does this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Giacalone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacalone, J., Kóta, J. Acceleration of Solar-Energetic Particles by Shocks. Space Sci Rev 124, 277–288 (2006). https://doi.org/10.1007/s11214-006-9110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-9110-1

Keywords

Navigation