Skip to main content
Log in

The Middle Atmospheric Ozone Response to the 11-Year Solar Cycle

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Because of its chemical and radiative properties, atmospheric ozone constitutes a key element of the Earth’s climate system. Absorption of sunlight by ozone in the ultraviolet wavelength range is responsible for stratospheric heating, and determines the temperature structure of the middle atmosphere. Changes in middle atmospheric ozone concentrations result in an altered radiative input to the troposphere and to the Earth’s surface, with implications on the energy balance and the chemical composition of the lower atmosphere. Although a wide range of ground- and satellite-based measurements of its integrated content and of its vertical distribution have been performed since several decades, a number of uncertainties still remain as to the response of middle atmospheric ozone to changes in solar irradiance over decadal time scales. This paper presents an overview of achieved findings, including a discussion of commonly applied data analysis methods and of their implication for the obtained results. We suggest that because it does not imply least-squares fitting of prescribed periodic or proxy data functions into the considered times series, time-domain analysis provides a more reliable method than multiple regression analysis for extracting decadal-scale signals from observational ozone datasets. Applied to decadal ground-based observations, time-domain analysis indicates an average middle atmospheric ozone increase of the order of 2% from solar minimum to solar maximum, which is in reasonable agreement with model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell, J. K.: 1989, ‘On the Relation between Atmospheric Ozone and Sunspot Number’, J. Clim. 2, 1404–1416.

    Article  ADS  Google Scholar 

  • Bates, J. R.: 1981, ‘A dynamical mechanism through which variations in solar ultra violet radiation can influence tropospheric climate’, J. Geophys. Res. 104, 27,321–27,339.

    Google Scholar 

  • Brasseur, G.: 1993, ‘The Response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model’, J. Geophys. Res. 98, 20,079–23,090.

    Article  Google Scholar 

  • Chapman, S.: 1930, ‘On Ozone and Atomic Oxygen in the Upper Atmosphere’, Phil. Mag. S. 110, 369–383.

    Google Scholar 

  • Chubachi, S.: 1985, ‘A special ozone observation at Syowa Station, Antarctica from February 1982 to January 1983’, in Atmospheric Ozone, Proceedings of the Quadrennial Ozone symposium, Halkidiki, Greece, September 3–7, 1984, 285–289.

    Google Scholar 

  • Crutzen, P. J.: 1974, ‘Estimates of possible future ozone reductions from continued use of fluoro-chloro-methanes (CF2Cl2, CFCl3)’, Geophys. Res. Lett 1, 205–208.

    ADS  Google Scholar 

  • Cunnold, D. M., Yang, E.-S., Newchurch, M. J., Reinsel, G. C., Zawodny, J. M., and Russell III, J. M.: 2004, ‘Comment on “Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?” by W. Steinbrecht et al.’, J. Geophys. Res. 109, doi:10.1029/2004JD004826.

  • Dobson, G. M. B. and Harrison, D. N.: 1927, ‘Measurements of the Amount of Ozone in the Earth's Atmosphere and its Relation to other Geophysical Conditions. – Part II’, Proc. R. Soc. Lond. A 114, 521–541.

    Article  ADS  Google Scholar 

  • European Commission: 2003, ‘Ozone Climate Interactions’, Air pollution research report No. 81, EUR 20623, 143 pp., Luxembourg.

  • Egorova, T., Rozanov, E., Manzini, E., Haberreiter, M., Schmutz, W., Zubov, V., and Peter, T.: 2004, ‘Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model’, Geophys. Res. Lett. 31, doi:10.1029/2003GL019294.

    Google Scholar 

  • Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: 1985, ‘Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction’, Nature 315, 207–210.

    Article  ADS  Google Scholar 

  • Fleming, E. L., Chandra, S., Jackman, C. H., Considine, D. B., and Douglass, A. R.: 1995, ‘The middle atmospheric response to short and long-term solar UV varaitions: Analysis of observations and 2D model results’, J. Atmos. Terr. Phys. 57, 333–365.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2006, ‘Solar irradiance variability since 1978’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9046-5.

  • Gleisner, H. and Thejll, P.: 2003, ‘Patterns of tropospheric response to solar variability’, Geophys. Res. Lett. 30, doi:10.1029/2003GL017129.

    Google Scholar 

  • Gray, L., Crooks, S., Palmer, M., Pascoe, C., and Sparrow, S.: 2006, ‘A possible transfer mechanism for the 11-year solar cycle to the lower stratosphere’, Space Sci. Rev., this volume, doi; 10.1007/s11214-006-9069-y.

  • Haigh, J. D.: 1994, ‘The role of stratospheric ozone in modulating the solar radiative forcing of climate’, Nature 370, 544–546.

    Article  ADS  Google Scholar 

  • Haigh, J. D.: 1996, ‘The impact of solar variability on climate’, Science 272, 981–984.

    Article  ADS  Google Scholar 

  • Haigh, J. D.: 1999, ‘A GCM study of climate change in response to the 11-year solar cycle’, Q. J. Roy. Meteorol. Soc. 125, 871–892.

    Article  ADS  Google Scholar 

  • Haigh, J. D.: 2006, ‘Solar influences on dynamical coupling between the stratosphere and troposphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9067-0.

  • Haigh, J. D., Austin, J., Butchart, N., Chanin, M.-L., Crooks, S., Gray, L. J., Halenka, T., Hampson, J., Hood, L. L., Isaksen, I. S. A., Keckhut, P., Labitzke, K., Langematz, U., Matthes, K., Palmer, M., Rognerud, B., Tourpali, K., and Zerefos, C.: 2004, ‘Solar Variability and Climate: Selected Results from the SOLICE Project’, SPARC Newsletter 23, 19–29.

    Google Scholar 

  • Hines, C. O.: 1974, ‘A possible mechanism for the production of Sun-weather correlations’, J. Atmos. Sci. 31, 589–591.

    Article  ADS  Google Scholar 

  • Hood, L. L.: 1997, ‘The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere’, J. Geophys. Res. 102, 1355–1370.

    Article  ADS  Google Scholar 

  • Hood, L. L.: 2004, ‘Effects of solar UV variability on the stratosphere’, in J. Pap et al. (eds.), Solar Variability and its Effect on the Earth's Atmosphere and Climate System, AGU Monograph Series, American Geophysical Union, Washington D.C., pp. 283–303.

    Google Scholar 

  • Ingram, W. J.: 2006, ‘Detection and attribution of climate change, and understanding solar influence on climate’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9057-2.

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Lopez-Puertas, M.: 2006, ‘Satellite measurements of middle atmospheric impacts by solar proton events in Solar Cycle 23’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9071-4.

  • Kodera, K.: 2004, ‘Solar influence on the Indian Ocean Monsoon through dynamical processes’, Geophys. Res. Lett. 31, doi:10.1029/2004GL020928.

    Google Scholar 

  • Kodera, K.: 2006, ‘The role of dynamics in solar forcing’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9066-1.

  • Kodera, K. and Kuroda, Y.: 2002, ‘Dynamical response to the solar cycle’, J. Geophys. Res. 107, doi:10.1029/2002JD002224.

    Google Scholar 

  • Labitzke, K.: 2006, ‘Solar variation and stratospheric response’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9061-6.

  • Langematz, U., Grenfell, J. L., Matthes, K., Mieth, P., Kunze, M., Steil, B., and Brühl, C.: 2005, ‘Chemical effects in 11-year solar cycle simulations with the Freie Universität Berline Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM)’, J. Geophys. Res. 32, doi:10.1029/2005GL022686.

    Google Scholar 

  • Langen, J.: 2006, ‘Recent Space Data – Introductory Paper Part V’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9070-5.

  • Lee, H. and Smith, A. K.: 2003, ‘Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades’, J. Geophys. Res. 108, doi:10.1029/2001JD001503.

    Google Scholar 

  • Matthes, K., Kodera, K., Haigh, J. D., Shindell, D. T., Shibata, K., Langematz, U., Rozanov, E., and Kuroda, Y.: 2003, ‘GRIPS solar experiments intercomparison project: Initial results’, Pap. Meteorol. Geophys., 54, 71–90.

    Article  Google Scholar 

  • Matthes, K., Langematz, U., Gray, L. J. Kodera, K., and Labitzke, K.: 2004, ‘Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CHAM)’, J. Geophys. Res. 109, doi:10.1029/2003JD004012.

    Google Scholar 

  • Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: 2006, ‘The transfer of the solar signal from the stratosphere to the troposphere: Northern Winter’, J. Geophys. Res. 111, doi:10.1029/ 2005JD006283.

    Google Scholar 

  • McCormack, J. P. and Hood, L. L.: 1996, ‘Apparent solar cycle variations of uppers stratospheric ozone and temperature: Latitude and seasonal dependences’, J. Geophys. Res. 101, 20,933–20,944.

    Article  ADS  Google Scholar 

  • Miller, A. J., Hollandsworth, S. M., Flynn, L. E., Tiao, G. C., Reinsel, G. C., Bishop, L., McPeters, R. D., Planet, W. G., DeLuisi, J. J., Mateer, C. L., Wuebbles, D., Kerr, J., and Nagatani, R. M.: 1996, ‘Comparisons of observed ozone trends and solar effects in the stratosphere through examination of ground-based Umkehr and combined solar backscattered ultraviolet (SBUV) and SBUV 2 satellite data’, J. Geophys. Res. 101, 9017–9021.

    Article  ADS  Google Scholar 

  • Molina, M. J. and Rowland, F. S.: 1974, ‘Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone’, Nature 249, 810–812.

    Article  ADS  Google Scholar 

  • Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J. M., and Russell III, J. M.: 2003, ‘Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery’, J. Geophys. Res. 108, doi:10.1029/2003JD003471.

  • Press, W. H., Teukolsky, S. A. Vetterling, W. T., and Flannery, B. P.: 1992, ‘Numerical Recipes in C - The Art of Scientific Computing (2nd Edition)’, Cambridge University Press, Cambridge, 994 pp.

    MATH  Google Scholar 

  • Reinsel, G. C., Weatherhead, E. C., Tiao, G. C., Miller, A. J., Nagatani, R. M., Wuebbles, D. J., and Flynn, L. E.: 2002, ‘On detection of turnaround and recovery in trend for ozone’, J. Geophys. Res. 107, doi:10.1029/2001JD000500.

    Google Scholar 

  • Rottman, G.: 2006, ‘Measurement of total and spectral solar irradiance’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9045-6.

  • Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., and Zubov, V. A.: 2004, ‘Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model’, J. Geophys. Res. 109, doi:10.1029/2003JD003796.

  • Rozanov, E., Callis, L., Schlesinger, M., Yang, F., Andronova, N., and Zubov, V.: 2005, ‘Atmospheric response to NOy source due to energetic electron precipitation’, J. Geophys. Res. 32, doi:10.1029/2005GL023041.

    Google Scholar 

  • Salby, M. L. and Callaghan, P. F.: 2006, ‘Influence of the solar cycle on the general circulation of the stratosphere and upper troposphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9064-3.

  • Schmidt, H. and Brasseur, G. P.: 2006, ‘The response of the middle atmosphere to solar cycle forcing in the Hamburg model of the neutral and ionized atmosphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9068-z.

  • Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: 1999, ‘Solar cycle variability, ozone, and climate’, Science 284, 305–308.

    Article  ADS  Google Scholar 

  • Shindell, D. T., Schmidt, G. A., Miller, R. L., and Rind, D.: 2001, ‘Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing’, J. Geophys. Res. 106, 7193–7210.

    Article  ADS  Google Scholar 

  • Sinnhuber, B.-M., von der Gathen P., Sinnhuber, M., Rex, M., König-Langlo G., and hboxOltmans, S. J.: 2005, ‘Large decadal scale changes of polar ozone suggest solar influence’, Atmos. Chem. Phys. Discuss. 5, 12,103–12,117.

    Google Scholar 

  • Staehelin, J., Harris, N. R. P., Appenzeller, C., and Eberhard, J.: 2001, ‘Ozone Trends: A Review’, Rev. Geophys. 39(2), 231–290.

    Article  ADS  Google Scholar 

  • Steinbrecht, W., Claude, H., and Winkler, P.: 2004, ‘Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?’, J. Geophys. Res. 109, doi:10.1029/2003JD004284.

    Google Scholar 

  • Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodny, J.: 1992, ‘Measured trends in stratospheric ozone’, Science 256, 342–349.

    Article  ADS  Google Scholar 

  • Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., and Bruehl, C.: 2003, ‘Stratospheric and tropospheric response to enhanced solar UV radiation: A model study’, Geophys. Res. Lett. 30, doi:10.1029/2002GL016650.

    Google Scholar 

  • Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., Brühl, C., and Manzini, E.: 2005, ‘Solar cycle modulation of the Arctic Oscillation in a chemistry-climate model’, Geophys. Res. Lett. 32, doi:10.1029/2005GL023509.

    Google Scholar 

  • van Loon, H., Meehl, G.A., and Arblaster, J.M.: 2004, ‘A decadal solar effect in the tropics in July-August’, J. Atm. Sol.-Terr. Phys. 66, 1767–1778.

    Article  ADS  Google Scholar 

  • WMO (World Meteorological Organization): 2003, ‘Scientific Assessment of Ozone Depletion: 2002’, Global Ozone Research and Monitoring Project – Report No. 47, Geneva, 498 pp.

  • Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerud, B., and Isaksen, I. S. A.: 1997, ‘Solar activity-total column ozone relationships: Observations and model studies with heterogeneous chemistry’, J. Geophys. Res. 102, 1561–1569.

    Article  ADS  Google Scholar 

  • Zerefos, C. S., Tourpali, K., Isaksen, I. S. A., and Schuurmans, C. J. E.: 2001, ‘Long term solar induced variations in total ozone, stratospheric temperatures and the tropopause’, Adv. Sp. Res. 27, 1943–1948.

    Article  ADS  Google Scholar 

  • Zerefos, C. S., Tourpali, K., and Balis, D.: 2005, ‘Solar activity-ozone relationships in the vertical distribution of ozone’, Int. J. Rem. Sensing 26, 3449–3454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Calisesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calisesi, Y., Matthes, K. The Middle Atmospheric Ozone Response to the 11-Year Solar Cycle. Space Sci Rev 125, 273–286 (2006). https://doi.org/10.1007/s11214-006-9063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-9063-4

Keywords

Navigation